Description: Inference associated with biadani . Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011) (Proof shortened by BJ, 4-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | biadani.1 | |- ( ph -> ps ) |
|
| biadanii.2 | |- ( ps -> ( ph <-> ch ) ) |
||
| Assertion | biadanii | |- ( ph <-> ( ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadani.1 | |- ( ph -> ps ) |
|
| 2 | biadanii.2 | |- ( ps -> ( ph <-> ch ) ) |
|
| 3 | 1 | biadani | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) |
| 4 | 2 3 | mpbi | |- ( ph <-> ( ps /\ ch ) ) |