Metamath Proof Explorer


Theorem bian1d

Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017) (Proof shortened by Hongxiu Chen, 29-Jun-2025)

Ref Expression
Hypothesis bian1d.1
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
Assertion bian1d
|- ( ph -> ( ( ch /\ ps ) <-> ( ch /\ th ) ) )

Proof

Step Hyp Ref Expression
1 bian1d.1
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
2 ibar
 |-  ( ch -> ( th <-> ( ch /\ th ) ) )
3 2 bicomd
 |-  ( ch -> ( ( ch /\ th ) <-> th ) )
4 1 3 sylan9bb
 |-  ( ( ph /\ ch ) -> ( ps <-> th ) )
5 4 ex
 |-  ( ph -> ( ch -> ( ps <-> th ) ) )
6 5 pm5.32d
 |-  ( ph -> ( ( ch /\ ps ) <-> ( ch /\ th ) ) )