Metamath Proof Explorer


Theorem bian1d

Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017)

Ref Expression
Hypothesis bian1d.1
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
Assertion bian1d
|- ( ph -> ( ( ch /\ ps ) <-> ( ch /\ th ) ) )

Proof

Step Hyp Ref Expression
1 bian1d.1
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
2 1 biimpd
 |-  ( ph -> ( ps -> ( ch /\ th ) ) )
3 2 adantld
 |-  ( ph -> ( ( ch /\ ps ) -> ( ch /\ th ) ) )
4 simpl
 |-  ( ( ch /\ th ) -> ch )
5 4 a1i
 |-  ( ph -> ( ( ch /\ th ) -> ch ) )
6 1 biimprd
 |-  ( ph -> ( ( ch /\ th ) -> ps ) )
7 5 6 jcad
 |-  ( ph -> ( ( ch /\ th ) -> ( ch /\ ps ) ) )
8 3 7 impbid
 |-  ( ph -> ( ( ch /\ ps ) <-> ( ch /\ th ) ) )