Metamath Proof Explorer


Theorem bianass

Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypothesis bianass.1
|- ( ph <-> ( ps /\ ch ) )
Assertion bianass
|- ( ( et /\ ph ) <-> ( ( et /\ ps ) /\ ch ) )

Proof

Step Hyp Ref Expression
1 bianass.1
 |-  ( ph <-> ( ps /\ ch ) )
2 1 anbi2i
 |-  ( ( et /\ ph ) <-> ( et /\ ( ps /\ ch ) ) )
3 anass
 |-  ( ( ( et /\ ps ) /\ ch ) <-> ( et /\ ( ps /\ ch ) ) )
4 2 3 bitr4i
 |-  ( ( et /\ ph ) <-> ( ( et /\ ps ) /\ ch ) )