Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bianass.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
Assertion | bianass | |- ( ( et /\ ph ) <-> ( ( et /\ ps ) /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianass.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
2 | 1 | anbi2i | |- ( ( et /\ ph ) <-> ( et /\ ( ps /\ ch ) ) ) |
3 | anass | |- ( ( ( et /\ ps ) /\ ch ) <-> ( et /\ ( ps /\ ch ) ) ) |
|
4 | 2 3 | bitr4i | |- ( ( et /\ ph ) <-> ( ( et /\ ps ) /\ ch ) ) |