Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bianass.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
| Assertion | bianassc | |- ( ( et /\ ph ) <-> ( ( ps /\ et ) /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianass.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
| 2 | 1 | bianass | |- ( ( et /\ ph ) <-> ( ( et /\ ps ) /\ ch ) ) |
| 3 | ancom | |- ( ( et /\ ps ) <-> ( ps /\ et ) ) |
|
| 4 | 2 3 | bianbi | |- ( ( et /\ ph ) <-> ( ( ps /\ et ) /\ ch ) ) |