Metamath Proof Explorer


Theorem biancomi

Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018)

Ref Expression
Hypothesis biancomi.1
|- ( ph <-> ( ch /\ ps ) )
Assertion biancomi
|- ( ph <-> ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 biancomi.1
 |-  ( ph <-> ( ch /\ ps ) )
2 ancom
 |-  ( ( ps /\ ch ) <-> ( ch /\ ps ) )
3 1 2 bitr4i
 |-  ( ph <-> ( ps /\ ch ) )