Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995) (Proof shortened by Wolf Lammen, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bianfd.1 | |- ( ph -> -. ps ) |
|
| Assertion | bianfd | |- ( ph -> ( ps <-> ( ps /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianfd.1 | |- ( ph -> -. ps ) |
|
| 2 | 1 | intnanrd | |- ( ph -> -. ( ps /\ ch ) ) |
| 3 | 1 2 | 2falsed | |- ( ph -> ( ps <-> ( ps /\ ch ) ) ) |