Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995) (Proof shortened by Wolf Lammen, 5-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bianfd.1 | |- ( ph -> -. ps ) |
|
Assertion | bianfd | |- ( ph -> ( ps <-> ( ps /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianfd.1 | |- ( ph -> -. ps ) |
|
2 | 1 | intnanrd | |- ( ph -> -. ( ps /\ ch ) ) |
3 | 1 2 | 2falsed | |- ( ph -> ( ps <-> ( ps /\ ch ) ) ) |