Description: A transitive law of equivalence. Compare Theorem *4.22 of WhiteheadRussell p. 117. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | biantr | |- ( ( ( ph <-> ps ) /\ ( ch <-> ps ) ) -> ( ph <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ( ch <-> ps ) -> ( ch <-> ps ) ) |
|
2 | 1 | bibi2d | |- ( ( ch <-> ps ) -> ( ( ph <-> ch ) <-> ( ph <-> ps ) ) ) |
3 | 2 | biimparc | |- ( ( ( ph <-> ps ) /\ ( ch <-> ps ) ) -> ( ph <-> ch ) ) |