Metamath Proof Explorer


Theorem bibi12i

Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses bibi2i.1
|- ( ph <-> ps )
bibi12i.2
|- ( ch <-> th )
Assertion bibi12i
|- ( ( ph <-> ch ) <-> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 bibi2i.1
 |-  ( ph <-> ps )
2 bibi12i.2
 |-  ( ch <-> th )
3 2 bibi2i
 |-  ( ( ph <-> ch ) <-> ( ph <-> th ) )
4 1 bibi1i
 |-  ( ( ph <-> th ) <-> ( ps <-> th ) )
5 3 4 bitri
 |-  ( ( ph <-> ch ) <-> ( ps <-> th ) )