Metamath Proof Explorer


Theorem bibi1d

Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993)

Ref Expression
Hypothesis imbid.1
|- ( ph -> ( ps <-> ch ) )
Assertion bibi1d
|- ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) )

Proof

Step Hyp Ref Expression
1 imbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 bibi2d
 |-  ( ph -> ( ( th <-> ps ) <-> ( th <-> ch ) ) )
3 bicom
 |-  ( ( ps <-> th ) <-> ( th <-> ps ) )
4 bicom
 |-  ( ( ch <-> th ) <-> ( th <-> ch ) )
5 2 3 4 3bitr4g
 |-  ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) )