Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
Assertion | bibi1d | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | 1 | bibi2d | |- ( ph -> ( ( th <-> ps ) <-> ( th <-> ch ) ) ) |
3 | bicom | |- ( ( ps <-> th ) <-> ( th <-> ps ) ) |
|
4 | bicom | |- ( ( ch <-> th ) <-> ( th <-> ch ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) ) |