Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | bibi1d | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | 1 | bibi2d | |- ( ph -> ( ( th <-> ps ) <-> ( th <-> ch ) ) ) |
| 3 | bicom | |- ( ( ps <-> th ) <-> ( th <-> ps ) ) |
|
| 4 | bicom | |- ( ( ch <-> th ) <-> ( th <-> ch ) ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) ) |