Metamath Proof Explorer


Theorem bibi1i

Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis bibi2i.1
|- ( ph <-> ps )
Assertion bibi1i
|- ( ( ph <-> ch ) <-> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 bibi2i.1
 |-  ( ph <-> ps )
2 bicom
 |-  ( ( ph <-> ch ) <-> ( ch <-> ph ) )
3 1 bibi2i
 |-  ( ( ch <-> ph ) <-> ( ch <-> ps ) )
4 bicom
 |-  ( ( ch <-> ps ) <-> ( ps <-> ch ) )
5 2 3 4 3bitri
 |-  ( ( ph <-> ch ) <-> ( ps <-> ch ) )