Metamath Proof Explorer


Theorem bibi2d

Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993) (Proof shortened by Wolf Lammen, 19-May-2013)

Ref Expression
Hypothesis imbid.1
|- ( ph -> ( ps <-> ch ) )
Assertion bibi2d
|- ( ph -> ( ( th <-> ps ) <-> ( th <-> ch ) ) )

Proof

Step Hyp Ref Expression
1 imbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 pm5.74i
 |-  ( ( ph -> ps ) <-> ( ph -> ch ) )
3 2 bibi2i
 |-  ( ( ( ph -> th ) <-> ( ph -> ps ) ) <-> ( ( ph -> th ) <-> ( ph -> ch ) ) )
4 pm5.74
 |-  ( ( ph -> ( th <-> ps ) ) <-> ( ( ph -> th ) <-> ( ph -> ps ) ) )
5 pm5.74
 |-  ( ( ph -> ( th <-> ch ) ) <-> ( ( ph -> th ) <-> ( ph -> ch ) ) )
6 3 4 5 3bitr4i
 |-  ( ( ph -> ( th <-> ps ) ) <-> ( ph -> ( th <-> ch ) ) )
7 6 pm5.74ri
 |-  ( ph -> ( ( th <-> ps ) <-> ( th <-> ch ) ) )