Metamath Proof Explorer


Theorem bibiad

Description: Eliminate an hypothesis th in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses bibiad.1
|- ( ( ph /\ ps ) -> th )
bibiad.2
|- ( ( ph /\ ch ) -> th )
bibiad.3
|- ( ( ph /\ th ) -> ( ps <-> ch ) )
Assertion bibiad
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 bibiad.1
 |-  ( ( ph /\ ps ) -> th )
2 bibiad.2
 |-  ( ( ph /\ ch ) -> th )
3 bibiad.3
 |-  ( ( ph /\ th ) -> ( ps <-> ch ) )
4 simpl
 |-  ( ( ph /\ ps ) -> ph )
5 simpr
 |-  ( ( ph /\ ps ) -> ps )
6 3 biimpa
 |-  ( ( ( ph /\ th ) /\ ps ) -> ch )
7 4 1 5 6 syl21anc
 |-  ( ( ph /\ ps ) -> ch )
8 simpl
 |-  ( ( ph /\ ch ) -> ph )
9 simpr
 |-  ( ( ph /\ ch ) -> ch )
10 3 biimpar
 |-  ( ( ( ph /\ th ) /\ ch ) -> ps )
11 8 2 9 10 syl21anc
 |-  ( ( ph /\ ch ) -> ps )
12 7 11 impbida
 |-  ( ph -> ( ps <-> ch ) )