Step |
Hyp |
Ref |
Expression |
1 |
|
bibiad.1 |
|- ( ( ph /\ ps ) -> th ) |
2 |
|
bibiad.2 |
|- ( ( ph /\ ch ) -> th ) |
3 |
|
bibiad.3 |
|- ( ( ph /\ th ) -> ( ps <-> ch ) ) |
4 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
5 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
6 |
3
|
biimpa |
|- ( ( ( ph /\ th ) /\ ps ) -> ch ) |
7 |
4 1 5 6
|
syl21anc |
|- ( ( ph /\ ps ) -> ch ) |
8 |
|
simpl |
|- ( ( ph /\ ch ) -> ph ) |
9 |
|
simpr |
|- ( ( ph /\ ch ) -> ch ) |
10 |
3
|
biimpar |
|- ( ( ( ph /\ th ) /\ ch ) -> ps ) |
11 |
8 2 9 10
|
syl21anc |
|- ( ( ph /\ ch ) -> ps ) |
12 |
7 11
|
impbida |
|- ( ph -> ( ps <-> ch ) ) |