Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007) (Proof shortened by Wolf Lammen, 28-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | bibif | |- ( -. ps -> ( ( ph <-> ps ) <-> -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbn2 | |- ( -. ps -> ( -. ph <-> ( ps <-> ph ) ) ) |
|
2 | bicom | |- ( ( ps <-> ph ) <-> ( ph <-> ps ) ) |
|
3 | 1 2 | bitr2di | |- ( -. ps -> ( ( ph <-> ps ) <-> -. ph ) ) |