Description: Commutative law for the biconditional. Theorem *4.21 of WhiteheadRussell p. 117. (Contributed by NM, 11-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 | |- ( ( ph <-> ps ) -> ( ps <-> ph ) ) |
|
2 | bicom1 | |- ( ( ps <-> ph ) -> ( ph <-> ps ) ) |
|
3 | 1 2 | impbii | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |