Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bicom1 | |- ( ( ph <-> ps ) -> ( ps <-> ph ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) )  | 
						|
| 2 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) )  | 
						|
| 3 | 1 2 | impbid | |- ( ( ph <-> ps ) -> ( ps <-> ph ) )  |