Description: Infer implication from a logical equivalence. Similar to biimpar . (Contributed by NM, 2-Jan-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | biimp3a.1 | |- ( ( ph /\ ps ) -> ( ch <-> th ) ) |
|
| Assertion | biimp3ar | |- ( ( ph /\ ps /\ th ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | |- ( ( ph /\ ps ) -> ( ch <-> th ) ) |
|
| 2 | 1 | exbiri | |- ( ph -> ( ps -> ( th -> ch ) ) ) |
| 3 | 2 | 3imp | |- ( ( ph /\ ps /\ th ) -> ch ) |