Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999) (Proof shortened by Wolf Lammen, 11-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 | |- ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |
|
2 | simprim | |- ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ps -> ph ) ) |
|
3 | 1 2 | sylbi | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |