Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999) (Proof shortened by Wolf Lammen, 11-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 | |- ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |
|
| 2 | simprim | |- ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ps -> ph ) ) |
|
| 3 | 1 2 | sylbi | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |