Metamath Proof Explorer


Theorem biimtrdi

Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994)

Ref Expression
Hypotheses biimtrdi.1
|- ( ph -> ( ps <-> ch ) )
biimtrdi.2
|- ( ch -> th )
Assertion biimtrdi
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 biimtrdi.1
 |-  ( ph -> ( ps <-> ch ) )
2 biimtrdi.2
 |-  ( ch -> th )
3 1 biimpd
 |-  ( ph -> ( ps -> ch ) )
4 3 2 syl6
 |-  ( ph -> ( ps -> th ) )