Metamath Proof Explorer


Theorem biimtrrdi

Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses biimtrrdi.1
|- ( ph -> ( ch <-> ps ) )
biimtrrdi.2
|- ( ch -> th )
Assertion biimtrrdi
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 biimtrrdi.1
 |-  ( ph -> ( ch <-> ps ) )
2 biimtrrdi.2
 |-  ( ch -> th )
3 1 biimprd
 |-  ( ph -> ( ps -> ch ) )
4 3 2 syl6
 |-  ( ph -> ( ps -> th ) )