Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | biimtrrid.1 | |- ( ps <-> ph ) |
|
| biimtrrid.2 | |- ( ch -> ( ps -> th ) ) |
||
| Assertion | biimtrrid | |- ( ch -> ( ph -> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 | |- ( ps <-> ph ) |
|
| 2 | biimtrrid.2 | |- ( ch -> ( ps -> th ) ) |
|
| 3 | 1 | biimpri | |- ( ph -> ps ) |
| 4 | 3 2 | syl5 | |- ( ch -> ( ph -> th ) ) |