Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja , is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im and pm5.21im ). (Contributed by Wolf Lammen, 13-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bija.1 | |- ( ph -> ( ps -> ch ) ) |
|
bija.2 | |- ( -. ph -> ( -. ps -> ch ) ) |
||
Assertion | bija | |- ( ( ph <-> ps ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bija.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | bija.2 | |- ( -. ph -> ( -. ps -> ch ) ) |
|
3 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
4 | 3 1 | syli | |- ( ( ph <-> ps ) -> ( ps -> ch ) ) |
5 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
6 | 5 | con3d | |- ( ( ph <-> ps ) -> ( -. ps -> -. ph ) ) |
7 | 6 2 | syli | |- ( ( ph <-> ps ) -> ( -. ps -> ch ) ) |
8 | 4 7 | pm2.61d | |- ( ( ph <-> ps ) -> ch ) |