Metamath Proof Explorer


Theorem bija

Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja , is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im and pm5.21im ). (Contributed by Wolf Lammen, 13-May-2013)

Ref Expression
Hypotheses bija.1
|- ( ph -> ( ps -> ch ) )
bija.2
|- ( -. ph -> ( -. ps -> ch ) )
Assertion bija
|- ( ( ph <-> ps ) -> ch )

Proof

Step Hyp Ref Expression
1 bija.1
 |-  ( ph -> ( ps -> ch ) )
2 bija.2
 |-  ( -. ph -> ( -. ps -> ch ) )
3 biimpr
 |-  ( ( ph <-> ps ) -> ( ps -> ph ) )
4 3 1 syli
 |-  ( ( ph <-> ps ) -> ( ps -> ch ) )
5 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
6 5 con3d
 |-  ( ( ph <-> ps ) -> ( -. ps -> -. ph ) )
7 6 2 syli
 |-  ( ( ph <-> ps ) -> ( -. ps -> ch ) )
8 4 7 pm2.61d
 |-  ( ( ph <-> ps ) -> ch )