Metamath Proof Explorer


Theorem bimsc1

Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion bimsc1
|- ( ( ( ph -> ps ) /\ ( ch <-> ( ps /\ ph ) ) ) -> ( ch <-> ph ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ch <-> ( ps /\ ph ) ) -> ( ch <-> ( ps /\ ph ) ) )
2 simpr
 |-  ( ( ps /\ ph ) -> ph )
3 ancr
 |-  ( ( ph -> ps ) -> ( ph -> ( ps /\ ph ) ) )
4 2 3 impbid2
 |-  ( ( ph -> ps ) -> ( ( ps /\ ph ) <-> ph ) )
5 1 4 sylan9bbr
 |-  ( ( ( ph -> ps ) /\ ( ch <-> ( ps /\ ph ) ) ) -> ( ch <-> ph ) )