Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | bimsc1 | |- ( ( ( ph -> ps ) /\ ( ch <-> ( ps /\ ph ) ) ) -> ( ch <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ( ch <-> ( ps /\ ph ) ) -> ( ch <-> ( ps /\ ph ) ) ) |
|
2 | simpr | |- ( ( ps /\ ph ) -> ph ) |
|
3 | ancr | |- ( ( ph -> ps ) -> ( ph -> ( ps /\ ph ) ) ) |
|
4 | 2 3 | impbid2 | |- ( ( ph -> ps ) -> ( ( ps /\ ph ) <-> ph ) ) |
5 | 1 4 | sylan9bbr | |- ( ( ( ph -> ps ) /\ ( ch <-> ( ps /\ ph ) ) ) -> ( ch <-> ph ) ) |