| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = 0 -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ 0 ) ) |
| 2 |
|
oveq2 |
|- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
| 3 |
|
oveq1 |
|- ( x = 0 -> ( x _C k ) = ( 0 _C k ) ) |
| 4 |
|
oveq1 |
|- ( x = 0 -> ( x - k ) = ( 0 - k ) ) |
| 5 |
4
|
oveq2d |
|- ( x = 0 -> ( A ^ ( x - k ) ) = ( A ^ ( 0 - k ) ) ) |
| 6 |
5
|
oveq1d |
|- ( x = 0 -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) |
| 7 |
3 6
|
oveq12d |
|- ( x = 0 -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 8 |
7
|
adantr |
|- ( ( x = 0 /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 9 |
2 8
|
sumeq12dv |
|- ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 10 |
1 9
|
eqeq12d |
|- ( x = 0 -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) ) |
| 11 |
10
|
imbi2d |
|- ( x = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 12 |
|
oveq2 |
|- ( x = n -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ n ) ) |
| 13 |
|
oveq2 |
|- ( x = n -> ( 0 ... x ) = ( 0 ... n ) ) |
| 14 |
|
oveq1 |
|- ( x = n -> ( x _C k ) = ( n _C k ) ) |
| 15 |
|
oveq1 |
|- ( x = n -> ( x - k ) = ( n - k ) ) |
| 16 |
15
|
oveq2d |
|- ( x = n -> ( A ^ ( x - k ) ) = ( A ^ ( n - k ) ) ) |
| 17 |
16
|
oveq1d |
|- ( x = n -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) |
| 18 |
14 17
|
oveq12d |
|- ( x = n -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 19 |
18
|
adantr |
|- ( ( x = n /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 20 |
13 19
|
sumeq12dv |
|- ( x = n -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 21 |
12 20
|
eqeq12d |
|- ( x = n -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) ) |
| 22 |
21
|
imbi2d |
|- ( x = n -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 23 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ ( n + 1 ) ) ) |
| 24 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 0 ... x ) = ( 0 ... ( n + 1 ) ) ) |
| 25 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x _C k ) = ( ( n + 1 ) _C k ) ) |
| 26 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x - k ) = ( ( n + 1 ) - k ) ) |
| 27 |
26
|
oveq2d |
|- ( x = ( n + 1 ) -> ( A ^ ( x - k ) ) = ( A ^ ( ( n + 1 ) - k ) ) ) |
| 28 |
27
|
oveq1d |
|- ( x = ( n + 1 ) -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) |
| 29 |
25 28
|
oveq12d |
|- ( x = ( n + 1 ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 30 |
29
|
adantr |
|- ( ( x = ( n + 1 ) /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 31 |
24 30
|
sumeq12dv |
|- ( x = ( n + 1 ) -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 32 |
23 31
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 33 |
32
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 34 |
|
oveq2 |
|- ( x = N -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ N ) ) |
| 35 |
|
oveq2 |
|- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
| 36 |
|
oveq1 |
|- ( x = N -> ( x _C k ) = ( N _C k ) ) |
| 37 |
|
oveq1 |
|- ( x = N -> ( x - k ) = ( N - k ) ) |
| 38 |
37
|
oveq2d |
|- ( x = N -> ( A ^ ( x - k ) ) = ( A ^ ( N - k ) ) ) |
| 39 |
38
|
oveq1d |
|- ( x = N -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) |
| 40 |
36 39
|
oveq12d |
|- ( x = N -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( x = N /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 42 |
35 41
|
sumeq12dv |
|- ( x = N -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 43 |
34 42
|
eqeq12d |
|- ( x = N -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) |
| 44 |
43
|
imbi2d |
|- ( x = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 45 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
| 46 |
|
exp0 |
|- ( B e. CC -> ( B ^ 0 ) = 1 ) |
| 47 |
45 46
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = ( 1 x. 1 ) ) |
| 48 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 49 |
47 48
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = 1 ) |
| 50 |
49
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) = ( 1 x. 1 ) ) |
| 51 |
50 48
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) = 1 ) |
| 52 |
|
0z |
|- 0 e. ZZ |
| 53 |
|
ax-1cn |
|- 1 e. CC |
| 54 |
51 53
|
eqeltrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) e. CC ) |
| 55 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
| 56 |
|
0nn0 |
|- 0 e. NN0 |
| 57 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
| 58 |
56 57
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
| 59 |
55 58
|
eqtrdi |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
| 60 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
| 61 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 62 |
60 61
|
eqtrdi |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
| 63 |
62
|
oveq2d |
|- ( k = 0 -> ( A ^ ( 0 - k ) ) = ( A ^ 0 ) ) |
| 64 |
|
oveq2 |
|- ( k = 0 -> ( B ^ k ) = ( B ^ 0 ) ) |
| 65 |
63 64
|
oveq12d |
|- ( k = 0 -> ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
| 66 |
59 65
|
oveq12d |
|- ( k = 0 -> ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 67 |
66
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 68 |
52 54 67
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 69 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 70 |
69
|
exp0d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = 1 ) |
| 71 |
51 68 70
|
3eqtr4rd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 72 |
|
simprl |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> A e. CC ) |
| 73 |
|
simprr |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> B e. CC ) |
| 74 |
|
simpl |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> n e. NN0 ) |
| 75 |
|
id |
|- ( ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 76 |
72 73 74 75
|
binomlem |
|- ( ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) /\ ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 77 |
76
|
exp31 |
|- ( n e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 78 |
77
|
a2d |
|- ( n e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 79 |
11 22 33 44 71 78
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) |
| 80 |
79
|
impcom |
|- ( ( ( A e. CC /\ B e. CC ) /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 81 |
80
|
3impa |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |