Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = 0 -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ 0 ) ) |
2 |
|
oveq2 |
|- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
3 |
|
oveq1 |
|- ( x = 0 -> ( x _C k ) = ( 0 _C k ) ) |
4 |
|
oveq1 |
|- ( x = 0 -> ( x - k ) = ( 0 - k ) ) |
5 |
4
|
oveq2d |
|- ( x = 0 -> ( A ^ ( x - k ) ) = ( A ^ ( 0 - k ) ) ) |
6 |
5
|
oveq1d |
|- ( x = 0 -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) |
7 |
3 6
|
oveq12d |
|- ( x = 0 -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
8 |
7
|
adantr |
|- ( ( x = 0 /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
9 |
2 8
|
sumeq12dv |
|- ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
10 |
1 9
|
eqeq12d |
|- ( x = 0 -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) ) |
11 |
10
|
imbi2d |
|- ( x = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) ) ) |
12 |
|
oveq2 |
|- ( x = n -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ n ) ) |
13 |
|
oveq2 |
|- ( x = n -> ( 0 ... x ) = ( 0 ... n ) ) |
14 |
|
oveq1 |
|- ( x = n -> ( x _C k ) = ( n _C k ) ) |
15 |
|
oveq1 |
|- ( x = n -> ( x - k ) = ( n - k ) ) |
16 |
15
|
oveq2d |
|- ( x = n -> ( A ^ ( x - k ) ) = ( A ^ ( n - k ) ) ) |
17 |
16
|
oveq1d |
|- ( x = n -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) |
18 |
14 17
|
oveq12d |
|- ( x = n -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
19 |
18
|
adantr |
|- ( ( x = n /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
20 |
13 19
|
sumeq12dv |
|- ( x = n -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
21 |
12 20
|
eqeq12d |
|- ( x = n -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) ) |
22 |
21
|
imbi2d |
|- ( x = n -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) ) ) |
23 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ ( n + 1 ) ) ) |
24 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 0 ... x ) = ( 0 ... ( n + 1 ) ) ) |
25 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x _C k ) = ( ( n + 1 ) _C k ) ) |
26 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x - k ) = ( ( n + 1 ) - k ) ) |
27 |
26
|
oveq2d |
|- ( x = ( n + 1 ) -> ( A ^ ( x - k ) ) = ( A ^ ( ( n + 1 ) - k ) ) ) |
28 |
27
|
oveq1d |
|- ( x = ( n + 1 ) -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) |
29 |
25 28
|
oveq12d |
|- ( x = ( n + 1 ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
30 |
29
|
adantr |
|- ( ( x = ( n + 1 ) /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
31 |
24 30
|
sumeq12dv |
|- ( x = ( n + 1 ) -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
32 |
23 31
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
33 |
32
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
34 |
|
oveq2 |
|- ( x = N -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ N ) ) |
35 |
|
oveq2 |
|- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
36 |
|
oveq1 |
|- ( x = N -> ( x _C k ) = ( N _C k ) ) |
37 |
|
oveq1 |
|- ( x = N -> ( x - k ) = ( N - k ) ) |
38 |
37
|
oveq2d |
|- ( x = N -> ( A ^ ( x - k ) ) = ( A ^ ( N - k ) ) ) |
39 |
38
|
oveq1d |
|- ( x = N -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) |
40 |
36 39
|
oveq12d |
|- ( x = N -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
41 |
40
|
adantr |
|- ( ( x = N /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
42 |
35 41
|
sumeq12dv |
|- ( x = N -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
43 |
34 42
|
eqeq12d |
|- ( x = N -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) |
44 |
43
|
imbi2d |
|- ( x = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) ) |
45 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
46 |
|
exp0 |
|- ( B e. CC -> ( B ^ 0 ) = 1 ) |
47 |
45 46
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = ( 1 x. 1 ) ) |
48 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
49 |
47 48
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = 1 ) |
50 |
49
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) = ( 1 x. 1 ) ) |
51 |
50 48
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) = 1 ) |
52 |
|
0z |
|- 0 e. ZZ |
53 |
|
ax-1cn |
|- 1 e. CC |
54 |
51 53
|
eqeltrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) e. CC ) |
55 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
56 |
|
0nn0 |
|- 0 e. NN0 |
57 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
58 |
56 57
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
59 |
55 58
|
eqtrdi |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
60 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
61 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
62 |
60 61
|
eqtrdi |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
63 |
62
|
oveq2d |
|- ( k = 0 -> ( A ^ ( 0 - k ) ) = ( A ^ 0 ) ) |
64 |
|
oveq2 |
|- ( k = 0 -> ( B ^ k ) = ( B ^ 0 ) ) |
65 |
63 64
|
oveq12d |
|- ( k = 0 -> ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
66 |
59 65
|
oveq12d |
|- ( k = 0 -> ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
67 |
66
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
68 |
52 54 67
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
69 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
70 |
69
|
exp0d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = 1 ) |
71 |
51 68 70
|
3eqtr4rd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
72 |
|
simprl |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> A e. CC ) |
73 |
|
simprr |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> B e. CC ) |
74 |
|
simpl |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> n e. NN0 ) |
75 |
|
id |
|- ( ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
76 |
72 73 74 75
|
binomlem |
|- ( ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) /\ ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
77 |
76
|
exp31 |
|- ( n e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
78 |
77
|
a2d |
|- ( n e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
79 |
11 22 33 44 71 78
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) |
80 |
79
|
impcom |
|- ( ( ( A e. CC /\ B e. CC ) /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
81 |
80
|
3impa |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |