Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
2 |
1
|
oveq1i |
|- ( 2 ^ N ) = ( ( 1 + 1 ) ^ N ) |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
|
binom1p |
|- ( ( 1 e. CC /\ N e. NN0 ) -> ( ( 1 + 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) |
5 |
3 4
|
mpan |
|- ( N e. NN0 -> ( ( 1 + 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) |
6 |
2 5
|
eqtrid |
|- ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) |
7 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
8 |
|
1exp |
|- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
9 |
7 8
|
syl |
|- ( k e. ( 0 ... N ) -> ( 1 ^ k ) = 1 ) |
10 |
9
|
oveq2d |
|- ( k e. ( 0 ... N ) -> ( ( N _C k ) x. ( 1 ^ k ) ) = ( ( N _C k ) x. 1 ) ) |
11 |
|
bccl2 |
|- ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) |
12 |
11
|
nncnd |
|- ( k e. ( 0 ... N ) -> ( N _C k ) e. CC ) |
13 |
12
|
mulid1d |
|- ( k e. ( 0 ... N ) -> ( ( N _C k ) x. 1 ) = ( N _C k ) ) |
14 |
10 13
|
eqtrd |
|- ( k e. ( 0 ... N ) -> ( ( N _C k ) x. ( 1 ^ k ) ) = ( N _C k ) ) |
15 |
14
|
sumeq2i |
|- sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) = sum_ k e. ( 0 ... N ) ( N _C k ) |
16 |
6 15
|
eqtrdi |
|- ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( N _C k ) ) |