| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 2 | 1 | oveq1i |  |-  ( 2 ^ N ) = ( ( 1 + 1 ) ^ N ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | binom1p |  |-  ( ( 1 e. CC /\ N e. NN0 ) -> ( ( 1 + 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( N e. NN0 -> ( ( 1 + 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) | 
						
							| 6 | 2 5 | eqtrid |  |-  ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) ) | 
						
							| 7 |  | elfzelz |  |-  ( k e. ( 0 ... N ) -> k e. ZZ ) | 
						
							| 8 |  | 1exp |  |-  ( k e. ZZ -> ( 1 ^ k ) = 1 ) | 
						
							| 9 | 7 8 | syl |  |-  ( k e. ( 0 ... N ) -> ( 1 ^ k ) = 1 ) | 
						
							| 10 | 9 | oveq2d |  |-  ( k e. ( 0 ... N ) -> ( ( N _C k ) x. ( 1 ^ k ) ) = ( ( N _C k ) x. 1 ) ) | 
						
							| 11 |  | bccl2 |  |-  ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) | 
						
							| 12 | 11 | nncnd |  |-  ( k e. ( 0 ... N ) -> ( N _C k ) e. CC ) | 
						
							| 13 | 12 | mulridd |  |-  ( k e. ( 0 ... N ) -> ( ( N _C k ) x. 1 ) = ( N _C k ) ) | 
						
							| 14 | 10 13 | eqtrd |  |-  ( k e. ( 0 ... N ) -> ( ( N _C k ) x. ( 1 ^ k ) ) = ( N _C k ) ) | 
						
							| 15 | 14 | sumeq2i |  |-  sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( 1 ^ k ) ) = sum_ k e. ( 0 ... N ) ( N _C k ) | 
						
							| 16 | 6 15 | eqtrdi |  |-  ( N e. NN0 -> ( 2 ^ N ) = sum_ k e. ( 0 ... N ) ( N _C k ) ) |