| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( N - 1 ) ) e. Fin ) | 
						
							| 2 |  | fzssp1 |  |-  ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) | 
						
							| 3 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. CC /\ N e. NN0 ) -> N e. CC ) | 
						
							| 5 |  | ax-1cn |  |-  1 e. CC | 
						
							| 6 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 7 | 4 5 6 | sylancl |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) | 
						
							| 9 | 2 8 | sseqtrid |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 10 | 9 | sselda |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) | 
						
							| 11 |  | bccl2 |  |-  ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN ) | 
						
							| 13 | 12 | nncnd |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) | 
						
							| 14 |  | simpl |  |-  ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) | 
						
							| 15 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 16 |  | expcl |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) | 
						
							| 17 | 14 15 16 | syl2an |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A ^ k ) e. CC ) | 
						
							| 18 | 13 17 | mulcld |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( A ^ k ) ) e. CC ) | 
						
							| 19 | 10 18 | syldan |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( A ^ k ) ) e. CC ) | 
						
							| 20 | 1 19 | fsumcl |  |-  ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) e. CC ) | 
						
							| 21 |  | expcl |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) | 
						
							| 22 |  | addcom |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) | 
						
							| 23 | 14 5 22 | sylancl |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A + 1 ) = ( 1 + A ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( A + 1 ) ^ N ) = ( ( 1 + A ) ^ N ) ) | 
						
							| 25 |  | binom1p |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) | 
						
							| 26 |  | simpr |  |-  ( ( A e. CC /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 27 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 28 | 26 27 | eleqtrdi |  |-  ( ( A e. CC /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 29 |  | oveq2 |  |-  ( k = N -> ( N _C k ) = ( N _C N ) ) | 
						
							| 30 |  | oveq2 |  |-  ( k = N -> ( A ^ k ) = ( A ^ N ) ) | 
						
							| 31 | 29 30 | oveq12d |  |-  ( k = N -> ( ( N _C k ) x. ( A ^ k ) ) = ( ( N _C N ) x. ( A ^ N ) ) ) | 
						
							| 32 | 28 18 31 | fsumm1 |  |-  ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( ( N _C N ) x. ( A ^ N ) ) ) ) | 
						
							| 33 |  | bcnn |  |-  ( N e. NN0 -> ( N _C N ) = 1 ) | 
						
							| 34 | 33 | adantl |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( N _C N ) = 1 ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( N _C N ) x. ( A ^ N ) ) = ( 1 x. ( A ^ N ) ) ) | 
						
							| 36 | 21 | mullidd |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( 1 x. ( A ^ N ) ) = ( A ^ N ) ) | 
						
							| 37 | 35 36 | eqtrd |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( N _C N ) x. ( A ^ N ) ) = ( A ^ N ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( ( N _C N ) x. ( A ^ N ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) | 
						
							| 39 | 32 38 | eqtrd |  |-  ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) | 
						
							| 40 | 24 25 39 | 3eqtrd |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( A + 1 ) ^ N ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) | 
						
							| 41 | 20 21 40 | mvrraddd |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( ( A + 1 ) ^ N ) - ( A ^ N ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) ) |