Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( N - 1 ) ) e. Fin ) |
2 |
|
fzssp1 |
|- ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) |
3 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
4 |
3
|
adantl |
|- ( ( A e. CC /\ N e. NN0 ) -> N e. CC ) |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
7 |
4 5 6
|
sylancl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( N - 1 ) + 1 ) = N ) |
8 |
7
|
oveq2d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
9 |
2 8
|
sseqtrid |
|- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
10 |
9
|
sselda |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) |
11 |
|
bccl2 |
|- ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) |
12 |
11
|
adantl |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN ) |
13 |
12
|
nncnd |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
14 |
|
simpl |
|- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
15 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
16 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
17 |
14 15 16
|
syl2an |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A ^ k ) e. CC ) |
18 |
13 17
|
mulcld |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( A ^ k ) ) e. CC ) |
19 |
10 18
|
syldan |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( A ^ k ) ) e. CC ) |
20 |
1 19
|
fsumcl |
|- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) e. CC ) |
21 |
|
expcl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
22 |
|
addcom |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) |
23 |
14 5 22
|
sylancl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A + 1 ) = ( 1 + A ) ) |
24 |
23
|
oveq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( A + 1 ) ^ N ) = ( ( 1 + A ) ^ N ) ) |
25 |
|
binom1p |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |
26 |
|
simpr |
|- ( ( A e. CC /\ N e. NN0 ) -> N e. NN0 ) |
27 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
28 |
26 27
|
eleqtrdi |
|- ( ( A e. CC /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
29 |
|
oveq2 |
|- ( k = N -> ( N _C k ) = ( N _C N ) ) |
30 |
|
oveq2 |
|- ( k = N -> ( A ^ k ) = ( A ^ N ) ) |
31 |
29 30
|
oveq12d |
|- ( k = N -> ( ( N _C k ) x. ( A ^ k ) ) = ( ( N _C N ) x. ( A ^ N ) ) ) |
32 |
28 18 31
|
fsumm1 |
|- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( ( N _C N ) x. ( A ^ N ) ) ) ) |
33 |
|
bcnn |
|- ( N e. NN0 -> ( N _C N ) = 1 ) |
34 |
33
|
adantl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( N _C N ) = 1 ) |
35 |
34
|
oveq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( N _C N ) x. ( A ^ N ) ) = ( 1 x. ( A ^ N ) ) ) |
36 |
21
|
mulid2d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( 1 x. ( A ^ N ) ) = ( A ^ N ) ) |
37 |
35 36
|
eqtrd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( N _C N ) x. ( A ^ N ) ) = ( A ^ N ) ) |
38 |
37
|
oveq2d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( ( N _C N ) x. ( A ^ N ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) |
39 |
32 38
|
eqtrd |
|- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) |
40 |
24 25 39
|
3eqtrd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( A + 1 ) ^ N ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) |
41 |
20 21 40
|
mvrraddd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( A + 1 ) ^ N ) - ( A ^ N ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) ) |