| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
binom |
|- ( ( 1 e. CC /\ A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) ) |
| 3 |
1 2
|
mp3an1 |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) ) |
| 4 |
|
fznn0sub |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
| 5 |
4
|
adantl |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
| 6 |
5
|
nn0zd |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. ZZ ) |
| 7 |
|
1exp |
|- ( ( N - k ) e. ZZ -> ( 1 ^ ( N - k ) ) = 1 ) |
| 8 |
6 7
|
syl |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( 1 ^ ( N - k ) ) = 1 ) |
| 9 |
8
|
oveq1d |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) = ( 1 x. ( A ^ k ) ) ) |
| 10 |
|
simpl |
|- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
| 11 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 12 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 13 |
10 11 12
|
syl2an |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A ^ k ) e. CC ) |
| 14 |
13
|
mullidd |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( 1 x. ( A ^ k ) ) = ( A ^ k ) ) |
| 15 |
9 14
|
eqtrd |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) = ( A ^ k ) ) |
| 16 |
15
|
oveq2d |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) = ( ( N _C k ) x. ( A ^ k ) ) ) |
| 17 |
16
|
sumeq2dv |
|- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |
| 18 |
3 17
|
eqtrd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |