| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binom2.1 |
|- A e. CC |
| 2 |
|
binom2.2 |
|- B e. CC |
| 3 |
1 2
|
addcli |
|- ( A + B ) e. CC |
| 4 |
3 1 2
|
adddii |
|- ( ( A + B ) x. ( A + B ) ) = ( ( ( A + B ) x. A ) + ( ( A + B ) x. B ) ) |
| 5 |
1 2 1
|
adddiri |
|- ( ( A + B ) x. A ) = ( ( A x. A ) + ( B x. A ) ) |
| 6 |
2 1
|
mulcomi |
|- ( B x. A ) = ( A x. B ) |
| 7 |
6
|
oveq2i |
|- ( ( A x. A ) + ( B x. A ) ) = ( ( A x. A ) + ( A x. B ) ) |
| 8 |
5 7
|
eqtri |
|- ( ( A + B ) x. A ) = ( ( A x. A ) + ( A x. B ) ) |
| 9 |
1 2 2
|
adddiri |
|- ( ( A + B ) x. B ) = ( ( A x. B ) + ( B x. B ) ) |
| 10 |
8 9
|
oveq12i |
|- ( ( ( A + B ) x. A ) + ( ( A + B ) x. B ) ) = ( ( ( A x. A ) + ( A x. B ) ) + ( ( A x. B ) + ( B x. B ) ) ) |
| 11 |
1 1
|
mulcli |
|- ( A x. A ) e. CC |
| 12 |
1 2
|
mulcli |
|- ( A x. B ) e. CC |
| 13 |
11 12
|
addcli |
|- ( ( A x. A ) + ( A x. B ) ) e. CC |
| 14 |
2 2
|
mulcli |
|- ( B x. B ) e. CC |
| 15 |
13 12 14
|
addassi |
|- ( ( ( ( A x. A ) + ( A x. B ) ) + ( A x. B ) ) + ( B x. B ) ) = ( ( ( A x. A ) + ( A x. B ) ) + ( ( A x. B ) + ( B x. B ) ) ) |
| 16 |
11 12 12
|
addassi |
|- ( ( ( A x. A ) + ( A x. B ) ) + ( A x. B ) ) = ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) |
| 17 |
16
|
oveq1i |
|- ( ( ( ( A x. A ) + ( A x. B ) ) + ( A x. B ) ) + ( B x. B ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 18 |
10 15 17
|
3eqtr2i |
|- ( ( ( A + B ) x. A ) + ( ( A + B ) x. B ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 19 |
4 18
|
eqtri |
|- ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 20 |
3
|
sqvali |
|- ( ( A + B ) ^ 2 ) = ( ( A + B ) x. ( A + B ) ) |
| 21 |
1
|
sqvali |
|- ( A ^ 2 ) = ( A x. A ) |
| 22 |
12
|
2timesi |
|- ( 2 x. ( A x. B ) ) = ( ( A x. B ) + ( A x. B ) ) |
| 23 |
21 22
|
oveq12i |
|- ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) = ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) |
| 24 |
2
|
sqvali |
|- ( B ^ 2 ) = ( B x. B ) |
| 25 |
23 24
|
oveq12i |
|- ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 26 |
19 20 25
|
3eqtr4i |
|- ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) |