| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcl |  |-  ( B e. CC -> -u B e. CC ) | 
						
							| 2 |  | binom2 |  |-  ( ( A e. CC /\ -u B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) ) | 
						
							| 4 |  | negsub |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( A - B ) ^ 2 ) ) | 
						
							| 6 | 3 5 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) = ( ( A - B ) ^ 2 ) ) | 
						
							| 7 |  | mulneg2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. -u B ) ) = ( 2 x. -u ( A x. B ) ) ) | 
						
							| 9 |  | 2cn |  |-  2 e. CC | 
						
							| 10 |  | mulcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) | 
						
							| 11 |  | mulneg2 |  |-  ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. -u ( A x. B ) ) = -u ( 2 x. ( A x. B ) ) ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. -u ( A x. B ) ) = -u ( 2 x. ( A x. B ) ) ) | 
						
							| 13 | 8 12 | eqtr2d |  |-  ( ( A e. CC /\ B e. CC ) -> -u ( 2 x. ( A x. B ) ) = ( 2 x. ( A x. -u B ) ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + -u ( 2 x. ( A x. B ) ) ) = ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) ) | 
						
							| 15 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) | 
						
							| 17 |  | mulcl |  |-  ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) | 
						
							| 18 | 9 10 17 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) | 
						
							| 19 | 16 18 | negsubd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + -u ( 2 x. ( A x. B ) ) ) = ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) ) | 
						
							| 20 | 14 19 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) = ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) ) | 
						
							| 21 |  | sqneg |  |-  ( B e. CC -> ( -u B ^ 2 ) = ( B ^ 2 ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( -u B ^ 2 ) = ( B ^ 2 ) ) | 
						
							| 23 | 20 22 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) | 
						
							| 24 | 6 23 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |