Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
2 |
|
binom2 |
|- ( ( A e. CC /\ -u B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) ) |
4 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
5 |
4
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( A - B ) ^ 2 ) ) |
6 |
3 5
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) = ( ( A - B ) ^ 2 ) ) |
7 |
|
mulneg2 |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |
8 |
7
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. -u B ) ) = ( 2 x. -u ( A x. B ) ) ) |
9 |
|
2cn |
|- 2 e. CC |
10 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
11 |
|
mulneg2 |
|- ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. -u ( A x. B ) ) = -u ( 2 x. ( A x. B ) ) ) |
12 |
9 10 11
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. -u ( A x. B ) ) = -u ( 2 x. ( A x. B ) ) ) |
13 |
8 12
|
eqtr2d |
|- ( ( A e. CC /\ B e. CC ) -> -u ( 2 x. ( A x. B ) ) = ( 2 x. ( A x. -u B ) ) ) |
14 |
13
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + -u ( 2 x. ( A x. B ) ) ) = ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) ) |
15 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
16 |
15
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) |
17 |
|
mulcl |
|- ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
18 |
9 10 17
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
19 |
16 18
|
negsubd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + -u ( 2 x. ( A x. B ) ) ) = ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) ) |
20 |
14 19
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) = ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) ) |
21 |
|
sqneg |
|- ( B e. CC -> ( -u B ^ 2 ) = ( B ^ 2 ) ) |
22 |
21
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( -u B ^ 2 ) = ( B ^ 2 ) ) |
23 |
20 22
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
24 |
6 23
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |