Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|- ( A e. CC -> 1 e. CC ) |
2 |
|
binom2sub |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) ) |
3 |
1 2
|
mpdan |
|- ( A e. CC -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) ) |
4 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
5 |
4
|
oveq2d |
|- ( A e. CC -> ( 2 x. ( A x. 1 ) ) = ( 2 x. A ) ) |
6 |
5
|
oveq2d |
|- ( A e. CC -> ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) = ( ( A ^ 2 ) - ( 2 x. A ) ) ) |
7 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
8 |
7
|
a1i |
|- ( A e. CC -> ( 1 ^ 2 ) = 1 ) |
9 |
6 8
|
oveq12d |
|- ( A e. CC -> ( ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |
10 |
3 9
|
eqtrd |
|- ( A e. CC -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |