Metamath Proof Explorer


Theorem binom2subi

Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 13-Jun-2013)

Ref Expression
Hypotheses binom2subi.1
|- A e. CC
binom2subi.2
|- B e. CC
Assertion binom2subi
|- ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) )

Proof

Step Hyp Ref Expression
1 binom2subi.1
 |-  A e. CC
2 binom2subi.2
 |-  B e. CC
3 binom2sub
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) )
4 1 2 3 mp2an
 |-  ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) )