Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( m = 0 -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac 0 ) ) |
2 |
|
oveq2 |
|- ( m = 0 -> ( 0 ... m ) = ( 0 ... 0 ) ) |
3 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
4 |
2 3
|
eqtrdi |
|- ( m = 0 -> ( 0 ... m ) = { 0 } ) |
5 |
|
oveq1 |
|- ( m = 0 -> ( m _C k ) = ( 0 _C k ) ) |
6 |
|
oveq1 |
|- ( m = 0 -> ( m - k ) = ( 0 - k ) ) |
7 |
6
|
oveq2d |
|- ( m = 0 -> ( A FallFac ( m - k ) ) = ( A FallFac ( 0 - k ) ) ) |
8 |
7
|
oveq1d |
|- ( m = 0 -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) |
9 |
5 8
|
oveq12d |
|- ( m = 0 -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
10 |
9
|
adantr |
|- ( ( m = 0 /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
11 |
4 10
|
sumeq12dv |
|- ( m = 0 -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
12 |
1 11
|
eqeq12d |
|- ( m = 0 -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac 0 ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) ) |
13 |
12
|
imbi2d |
|- ( m = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac 0 ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
14 |
|
oveq2 |
|- ( m = n -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac n ) ) |
15 |
|
oveq2 |
|- ( m = n -> ( 0 ... m ) = ( 0 ... n ) ) |
16 |
|
oveq1 |
|- ( m = n -> ( m _C k ) = ( n _C k ) ) |
17 |
|
oveq1 |
|- ( m = n -> ( m - k ) = ( n - k ) ) |
18 |
17
|
oveq2d |
|- ( m = n -> ( A FallFac ( m - k ) ) = ( A FallFac ( n - k ) ) ) |
19 |
18
|
oveq1d |
|- ( m = n -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) |
20 |
16 19
|
oveq12d |
|- ( m = n -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
21 |
20
|
adantr |
|- ( ( m = n /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
22 |
15 21
|
sumeq12dv |
|- ( m = n -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
23 |
14 22
|
eqeq12d |
|- ( m = n -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) ) |
24 |
23
|
imbi2d |
|- ( m = n -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
25 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac ( n + 1 ) ) ) |
26 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 0 ... m ) = ( 0 ... ( n + 1 ) ) ) |
27 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m _C k ) = ( ( n + 1 ) _C k ) ) |
28 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m - k ) = ( ( n + 1 ) - k ) ) |
29 |
28
|
oveq2d |
|- ( m = ( n + 1 ) -> ( A FallFac ( m - k ) ) = ( A FallFac ( ( n + 1 ) - k ) ) ) |
30 |
29
|
oveq1d |
|- ( m = ( n + 1 ) -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) |
31 |
27 30
|
oveq12d |
|- ( m = ( n + 1 ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
32 |
31
|
adantr |
|- ( ( m = ( n + 1 ) /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
33 |
26 32
|
sumeq12dv |
|- ( m = ( n + 1 ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
34 |
25 33
|
eqeq12d |
|- ( m = ( n + 1 ) -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) |
35 |
34
|
imbi2d |
|- ( m = ( n + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
36 |
|
oveq2 |
|- ( m = N -> ( ( A + B ) FallFac m ) = ( ( A + B ) FallFac N ) ) |
37 |
|
oveq2 |
|- ( m = N -> ( 0 ... m ) = ( 0 ... N ) ) |
38 |
|
oveq1 |
|- ( m = N -> ( m _C k ) = ( N _C k ) ) |
39 |
|
oveq1 |
|- ( m = N -> ( m - k ) = ( N - k ) ) |
40 |
39
|
oveq2d |
|- ( m = N -> ( A FallFac ( m - k ) ) = ( A FallFac ( N - k ) ) ) |
41 |
40
|
oveq1d |
|- ( m = N -> ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) |
42 |
38 41
|
oveq12d |
|- ( m = N -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
43 |
42
|
adantr |
|- ( ( m = N /\ k e. ( 0 ... m ) ) -> ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
44 |
37 43
|
sumeq12dv |
|- ( m = N -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |
45 |
36 44
|
eqeq12d |
|- ( m = N -> ( ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) <-> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) |
46 |
45
|
imbi2d |
|- ( m = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac m ) = sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( A FallFac ( m - k ) ) x. ( B FallFac k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
47 |
|
fallfac0 |
|- ( A e. CC -> ( A FallFac 0 ) = 1 ) |
48 |
|
fallfac0 |
|- ( B e. CC -> ( B FallFac 0 ) = 1 ) |
49 |
47 48
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) = ( 1 x. 1 ) ) |
50 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
51 |
49 50
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) = 1 ) |
52 |
51
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) = ( 1 x. 1 ) ) |
53 |
52 50
|
eqtrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) = 1 ) |
54 |
|
0cn |
|- 0 e. CC |
55 |
|
ax-1cn |
|- 1 e. CC |
56 |
53 55
|
eqeltrdi |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) e. CC ) |
57 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
58 |
|
0nn0 |
|- 0 e. NN0 |
59 |
|
bcnn |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
60 |
58 59
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
61 |
57 60
|
eqtrdi |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
62 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
63 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
64 |
62 63
|
eqtrdi |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
65 |
64
|
oveq2d |
|- ( k = 0 -> ( A FallFac ( 0 - k ) ) = ( A FallFac 0 ) ) |
66 |
|
oveq2 |
|- ( k = 0 -> ( B FallFac k ) = ( B FallFac 0 ) ) |
67 |
65 66
|
oveq12d |
|- ( k = 0 -> ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) = ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) |
68 |
61 67
|
oveq12d |
|- ( k = 0 -> ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) = ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) ) |
69 |
68
|
sumsn |
|- ( ( 0 e. CC /\ ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) e. CC ) -> sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) = ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) ) |
70 |
54 56 69
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) = ( 1 x. ( ( A FallFac 0 ) x. ( B FallFac 0 ) ) ) ) |
71 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
72 |
|
fallfac0 |
|- ( ( A + B ) e. CC -> ( ( A + B ) FallFac 0 ) = 1 ) |
73 |
71 72
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac 0 ) = 1 ) |
74 |
53 70 73
|
3eqtr4rd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac 0 ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( A FallFac ( 0 - k ) ) x. ( B FallFac k ) ) ) ) |
75 |
|
simprl |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> A e. CC ) |
76 |
|
simprr |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> B e. CC ) |
77 |
|
simpl |
|- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> n e. NN0 ) |
78 |
|
id |
|- ( ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) -> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) |
79 |
75 76 77 78
|
binomfallfaclem2 |
|- ( ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) /\ ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) |
80 |
79
|
exp31 |
|- ( n e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
81 |
80
|
a2d |
|- ( n e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A FallFac ( n - k ) ) x. ( B FallFac k ) ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A FallFac ( ( n + 1 ) - k ) ) x. ( B FallFac k ) ) ) ) ) ) |
82 |
13 24 35 46 74 81
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) |
83 |
82
|
com12 |
|- ( ( A e. CC /\ B e. CC ) -> ( N e. NN0 -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) ) |
84 |
83
|
3impia |
|- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) FallFac N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A FallFac ( N - k ) ) x. ( B FallFac k ) ) ) ) |