| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							binomfallfaclem.1 | 
							 |-  ( ph -> A e. CC )  | 
						
						
							| 2 | 
							
								
							 | 
							binomfallfaclem.2 | 
							 |-  ( ph -> B e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							binomfallfaclem.3 | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 4 | 
							
								
							 | 
							elfzelz | 
							 |-  ( K e. ( 0 ... N ) -> K e. ZZ )  | 
						
						
							| 5 | 
							
								
							 | 
							bccl | 
							 |-  ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) e. NN0 )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2an | 
							 |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( N _C K ) e. NN0 )  | 
						
						
							| 7 | 
							
								6
							 | 
							nn0cnd | 
							 |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( N _C K ) e. CC )  | 
						
						
							| 8 | 
							
								
							 | 
							fznn0sub | 
							 |-  ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 )  | 
						
						
							| 9 | 
							
								
							 | 
							fallfaccl | 
							 |-  ( ( A e. CC /\ ( N - K ) e. NN0 ) -> ( A FallFac ( N - K ) ) e. CC )  | 
						
						
							| 10 | 
							
								1 8 9
							 | 
							syl2an | 
							 |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( A FallFac ( N - K ) ) e. CC )  | 
						
						
							| 11 | 
							
								
							 | 
							elfznn0 | 
							 |-  ( K e. ( 0 ... N ) -> K e. NN0 )  | 
						
						
							| 12 | 
							
								
							 | 
							peano2nn0 | 
							 |-  ( K e. NN0 -> ( K + 1 ) e. NN0 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( K e. ( 0 ... N ) -> ( K + 1 ) e. NN0 )  | 
						
						
							| 14 | 
							
								
							 | 
							fallfaccl | 
							 |-  ( ( B e. CC /\ ( K + 1 ) e. NN0 ) -> ( B FallFac ( K + 1 ) ) e. CC )  | 
						
						
							| 15 | 
							
								2 13 14
							 | 
							syl2an | 
							 |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( B FallFac ( K + 1 ) ) e. CC )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							mulcld | 
							 |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) e. CC )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							mulcld | 
							 |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( N _C K ) x. ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) ) e. CC )  |