Step |
Hyp |
Ref |
Expression |
1 |
|
binomlem.1 |
|- ( ph -> A e. CC ) |
2 |
|
binomlem.2 |
|- ( ph -> B e. CC ) |
3 |
|
binomlem.3 |
|- ( ph -> N e. NN0 ) |
4 |
|
binomlem.4 |
|- ( ps -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
5 |
4
|
adantl |
|- ( ( ph /\ ps ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
6 |
5
|
oveq1d |
|- ( ( ph /\ ps ) -> ( ( ( A + B ) ^ N ) x. A ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) ) |
7 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
8 |
|
fzelp1 |
|- ( k e. ( 0 ... N ) -> k e. ( 0 ... ( N + 1 ) ) ) |
9 |
|
elfzelz |
|- ( k e. ( 0 ... ( N + 1 ) ) -> k e. ZZ ) |
10 |
|
bccl |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
11 |
3 9 10
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. NN0 ) |
12 |
11
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. CC ) |
13 |
8 12
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
14 |
|
fznn0sub |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
15 |
|
expcl |
|- ( ( A e. CC /\ ( N - k ) e. NN0 ) -> ( A ^ ( N - k ) ) e. CC ) |
16 |
1 14 15
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( N - k ) ) e. CC ) |
17 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N + 1 ) ) -> k e. NN0 ) |
18 |
|
expcl |
|- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
19 |
2 17 18
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( B ^ k ) e. CC ) |
20 |
8 19
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( B ^ k ) e. CC ) |
21 |
16 20
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) e. CC ) |
22 |
13 21
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) e. CC ) |
23 |
7 1 22
|
fsummulc1 |
|- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) ) |
24 |
1
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> A e. CC ) |
25 |
13 21 24
|
mulassd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = ( ( N _C k ) x. ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) ) |
26 |
3
|
nn0cnd |
|- ( ph -> N e. CC ) |
27 |
26
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> N e. CC ) |
28 |
|
1cnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> 1 e. CC ) |
29 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
30 |
29
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ZZ ) |
31 |
30
|
zcnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) |
32 |
27 28 31
|
addsubd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N + 1 ) - k ) = ( ( N - k ) + 1 ) ) |
33 |
32
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( ( N + 1 ) - k ) ) = ( A ^ ( ( N - k ) + 1 ) ) ) |
34 |
|
expp1 |
|- ( ( A e. CC /\ ( N - k ) e. NN0 ) -> ( A ^ ( ( N - k ) + 1 ) ) = ( ( A ^ ( N - k ) ) x. A ) ) |
35 |
1 14 34
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( ( N - k ) + 1 ) ) = ( ( A ^ ( N - k ) ) x. A ) ) |
36 |
33 35
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( ( N + 1 ) - k ) ) = ( ( A ^ ( N - k ) ) x. A ) ) |
37 |
36
|
oveq1d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) = ( ( ( A ^ ( N - k ) ) x. A ) x. ( B ^ k ) ) ) |
38 |
16 24 20
|
mul32d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( A ^ ( N - k ) ) x. A ) x. ( B ^ k ) ) = ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) |
39 |
37 38
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) = ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) |
40 |
39
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) ) |
41 |
25 40
|
eqtr4d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
42 |
41
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
43 |
|
fzssp1 |
|- ( 0 ... N ) C_ ( 0 ... ( N + 1 ) ) |
44 |
43
|
a1i |
|- ( ph -> ( 0 ... N ) C_ ( 0 ... ( N + 1 ) ) ) |
45 |
|
fznn0sub |
|- ( k e. ( 0 ... ( N + 1 ) ) -> ( ( N + 1 ) - k ) e. NN0 ) |
46 |
|
expcl |
|- ( ( A e. CC /\ ( ( N + 1 ) - k ) e. NN0 ) -> ( A ^ ( ( N + 1 ) - k ) ) e. CC ) |
47 |
1 45 46
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( A ^ ( ( N + 1 ) - k ) ) e. CC ) |
48 |
47 19
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) e. CC ) |
49 |
12 48
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
50 |
8 49
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
51 |
3
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> N e. NN0 ) |
52 |
|
eldifi |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
53 |
52 9
|
syl |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) -> k e. ZZ ) |
54 |
53
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> k e. ZZ ) |
55 |
|
eldifn |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) |
56 |
55
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) |
57 |
|
bcval3 |
|- ( ( N e. NN0 /\ k e. ZZ /\ -. k e. ( 0 ... N ) ) -> ( N _C k ) = 0 ) |
58 |
51 54 56 57
|
syl3anc |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( N _C k ) = 0 ) |
59 |
58
|
oveq1d |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
60 |
48
|
mul02d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
61 |
52 60
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
62 |
59 61
|
eqtrd |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
63 |
|
fzssuz |
|- ( 0 ... ( N + 1 ) ) C_ ( ZZ>= ` 0 ) |
64 |
63
|
a1i |
|- ( ph -> ( 0 ... ( N + 1 ) ) C_ ( ZZ>= ` 0 ) ) |
65 |
44 50 62 64
|
sumss |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
66 |
23 42 65
|
3eqtrd |
|- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ ps ) -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
68 |
6 67
|
eqtrd |
|- ( ( ph /\ ps ) -> ( ( ( A + B ) ^ N ) x. A ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
69 |
4
|
oveq1d |
|- ( ps -> ( ( ( A + B ) ^ N ) x. B ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) ) |
70 |
7 2 22
|
fsummulc1 |
|- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) ) |
71 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
72 |
|
0z |
|- 0 e. ZZ |
73 |
72
|
a1i |
|- ( ph -> 0 e. ZZ ) |
74 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
75 |
2
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. CC ) |
76 |
22 75
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) e. CC ) |
77 |
|
oveq2 |
|- ( k = ( j - 1 ) -> ( N _C k ) = ( N _C ( j - 1 ) ) ) |
78 |
|
oveq2 |
|- ( k = ( j - 1 ) -> ( N - k ) = ( N - ( j - 1 ) ) ) |
79 |
78
|
oveq2d |
|- ( k = ( j - 1 ) -> ( A ^ ( N - k ) ) = ( A ^ ( N - ( j - 1 ) ) ) ) |
80 |
|
oveq2 |
|- ( k = ( j - 1 ) -> ( B ^ k ) = ( B ^ ( j - 1 ) ) ) |
81 |
79 80
|
oveq12d |
|- ( k = ( j - 1 ) -> ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) |
82 |
77 81
|
oveq12d |
|- ( k = ( j - 1 ) -> ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) = ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) ) |
83 |
82
|
oveq1d |
|- ( k = ( j - 1 ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) ) |
84 |
71 73 74 76 83
|
fsumshft |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ j e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) ) |
85 |
|
oveq1 |
|- ( j = k -> ( j - 1 ) = ( k - 1 ) ) |
86 |
85
|
oveq2d |
|- ( j = k -> ( N _C ( j - 1 ) ) = ( N _C ( k - 1 ) ) ) |
87 |
85
|
oveq2d |
|- ( j = k -> ( N - ( j - 1 ) ) = ( N - ( k - 1 ) ) ) |
88 |
87
|
oveq2d |
|- ( j = k -> ( A ^ ( N - ( j - 1 ) ) ) = ( A ^ ( N - ( k - 1 ) ) ) ) |
89 |
85
|
oveq2d |
|- ( j = k -> ( B ^ ( j - 1 ) ) = ( B ^ ( k - 1 ) ) ) |
90 |
88 89
|
oveq12d |
|- ( j = k -> ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) = ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) |
91 |
86 90
|
oveq12d |
|- ( j = k -> ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) ) |
92 |
91
|
oveq1d |
|- ( j = k -> ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) = ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) ) |
93 |
92
|
cbvsumv |
|- sum_ j e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) |
94 |
84 93
|
eqtrdi |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) ) |
95 |
26
|
adantr |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> N e. CC ) |
96 |
|
elfzelz |
|- ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. ZZ ) |
97 |
96
|
adantl |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. ZZ ) |
98 |
97
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. CC ) |
99 |
|
1cnd |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> 1 e. CC ) |
100 |
95 98 99
|
subsub3d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( N - ( k - 1 ) ) = ( ( N + 1 ) - k ) ) |
101 |
100
|
oveq2d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( A ^ ( N - ( k - 1 ) ) ) = ( A ^ ( ( N + 1 ) - k ) ) ) |
102 |
101
|
oveq1d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) |
103 |
102
|
oveq2d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) ) |
104 |
103
|
oveq1d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) ) |
105 |
|
fzp1ss |
|- ( 0 e. ZZ -> ( ( 0 + 1 ) ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) |
106 |
72 105
|
ax-mp |
|- ( ( 0 + 1 ) ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) |
107 |
106
|
sseli |
|- ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
108 |
9
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ZZ ) |
109 |
|
peano2zm |
|- ( k e. ZZ -> ( k - 1 ) e. ZZ ) |
110 |
108 109
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( k - 1 ) e. ZZ ) |
111 |
|
bccl |
|- ( ( N e. NN0 /\ ( k - 1 ) e. ZZ ) -> ( N _C ( k - 1 ) ) e. NN0 ) |
112 |
3 110 111
|
syl2an2r |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. NN0 ) |
113 |
112
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) |
114 |
107 113
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) |
115 |
107 47
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( A ^ ( ( N + 1 ) - k ) ) e. CC ) |
116 |
2
|
adantr |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> B e. CC ) |
117 |
|
elfznn |
|- ( k e. ( 1 ... ( N + 1 ) ) -> k e. NN ) |
118 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
119 |
118
|
oveq1i |
|- ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) |
120 |
117 119
|
eleq2s |
|- ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. NN ) |
121 |
120
|
adantl |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. NN ) |
122 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
123 |
121 122
|
syl |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
124 |
116 123
|
expcld |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( B ^ ( k - 1 ) ) e. CC ) |
125 |
115 124
|
mulcld |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) e. CC ) |
126 |
114 125 116
|
mulassd |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = ( ( N _C ( k - 1 ) ) x. ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) ) ) |
127 |
115 124 116
|
mulassd |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( ( B ^ ( k - 1 ) ) x. B ) ) ) |
128 |
|
expm1t |
|- ( ( B e. CC /\ k e. NN ) -> ( B ^ k ) = ( ( B ^ ( k - 1 ) ) x. B ) ) |
129 |
2 120 128
|
syl2an |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( B ^ k ) = ( ( B ^ ( k - 1 ) ) x. B ) ) |
130 |
129
|
oveq2d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( ( B ^ ( k - 1 ) ) x. B ) ) ) |
131 |
127 130
|
eqtr4d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) |
132 |
131
|
oveq2d |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
133 |
104 126 132
|
3eqtrd |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
134 |
133
|
sumeq2dv |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
135 |
106
|
a1i |
|- ( ph -> ( ( 0 + 1 ) ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) |
136 |
113 48
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
137 |
107 136
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
138 |
3
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> N e. NN0 ) |
139 |
|
eldifi |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
140 |
139
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
141 |
140 9
|
syl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. ZZ ) |
142 |
141 109
|
syl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( k - 1 ) e. ZZ ) |
143 |
|
eldifn |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> -. k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
144 |
143
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> -. k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
145 |
72
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> 0 e. ZZ ) |
146 |
138
|
nn0zd |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> N e. ZZ ) |
147 |
|
1zzd |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> 1 e. ZZ ) |
148 |
|
fzaddel |
|- ( ( ( 0 e. ZZ /\ N e. ZZ ) /\ ( ( k - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( k - 1 ) e. ( 0 ... N ) <-> ( ( k - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
149 |
145 146 142 147 148
|
syl22anc |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( k - 1 ) e. ( 0 ... N ) <-> ( ( k - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
150 |
141
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. CC ) |
151 |
|
ax-1cn |
|- 1 e. CC |
152 |
|
npcan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k - 1 ) + 1 ) = k ) |
153 |
150 151 152
|
sylancl |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
154 |
153
|
eleq1d |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( ( k - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) <-> k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
155 |
149 154
|
bitrd |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( k - 1 ) e. ( 0 ... N ) <-> k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
156 |
144 155
|
mtbird |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> -. ( k - 1 ) e. ( 0 ... N ) ) |
157 |
|
bcval3 |
|- ( ( N e. NN0 /\ ( k - 1 ) e. ZZ /\ -. ( k - 1 ) e. ( 0 ... N ) ) -> ( N _C ( k - 1 ) ) = 0 ) |
158 |
138 142 156 157
|
syl3anc |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( N _C ( k - 1 ) ) = 0 ) |
159 |
158
|
oveq1d |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
160 |
139 60
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
161 |
159 160
|
eqtrd |
|- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
162 |
135 137 161 64
|
sumss |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
163 |
94 134 162
|
3eqtrd |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
164 |
70 163
|
eqtrd |
|- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
165 |
69 164
|
sylan9eqr |
|- ( ( ph /\ ps ) -> ( ( ( A + B ) ^ N ) x. B ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
166 |
68 165
|
oveq12d |
|- ( ( ph /\ ps ) -> ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
167 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
168 |
167 3
|
expp1d |
|- ( ph -> ( ( A + B ) ^ ( N + 1 ) ) = ( ( ( A + B ) ^ N ) x. ( A + B ) ) ) |
169 |
167 3
|
expcld |
|- ( ph -> ( ( A + B ) ^ N ) e. CC ) |
170 |
169 1 2
|
adddid |
|- ( ph -> ( ( ( A + B ) ^ N ) x. ( A + B ) ) = ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) ) |
171 |
168 170
|
eqtrd |
|- ( ph -> ( ( A + B ) ^ ( N + 1 ) ) = ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) ) |
172 |
171
|
adantr |
|- ( ( ph /\ ps ) -> ( ( A + B ) ^ ( N + 1 ) ) = ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) ) |
173 |
|
bcpasc |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) ) |
174 |
3 9 173
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) ) |
175 |
174
|
oveq1d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
176 |
12 113 48
|
adddird |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
177 |
175 176
|
eqtr3d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
178 |
177
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
179 |
|
fzfid |
|- ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) |
180 |
179 49 136
|
fsumadd |
|- ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
181 |
178 180
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
182 |
181
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
183 |
166 172 182
|
3eqtr4d |
|- ( ( ph /\ ps ) -> ( ( A + B ) ^ ( N + 1 ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |