Metamath Proof Explorer


Theorem biorfri

Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 16-Jul-2021) (Proof shortened by AV, 10-Aug-2025)

Ref Expression
Hypothesis biorfi.1
|- -. ph
Assertion biorfri
|- ( ps <-> ( ps \/ ph ) )

Proof

Step Hyp Ref Expression
1 biorfi.1
 |-  -. ph
2 1 biorfi
 |-  ( ps <-> ( ph \/ ps ) )
3 orcom
 |-  ( ( ph \/ ps ) <-> ( ps \/ ph ) )
4 2 3 bitri
 |-  ( ps <-> ( ps \/ ph ) )