Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 16-Jul-2021) (Proof shortened by AV, 10-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | biorfi.1 | |- -. ph |
|
Assertion | biorfri | |- ( ps <-> ( ps \/ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | |- -. ph |
|
2 | 1 | biorfi | |- ( ps <-> ( ph \/ ps ) ) |
3 | orcom | |- ( ( ph \/ ps ) <-> ( ps \/ ph ) ) |
|
4 | 2 3 | bitri | |- ( ps <-> ( ps \/ ph ) ) |