| Step | Hyp | Ref | Expression | 
						
							| 1 |  | birthday.s |  |-  S = { f | f : ( 1 ... K ) --> ( 1 ... N ) } | 
						
							| 2 |  | birthday.t |  |-  T = { f | f : ( 1 ... K ) -1-1-> ( 1 ... N ) } | 
						
							| 3 |  | f1f |  |-  ( f : ( 1 ... K ) -1-1-> ( 1 ... N ) -> f : ( 1 ... K ) --> ( 1 ... N ) ) | 
						
							| 4 | 3 | ss2abi |  |-  { f | f : ( 1 ... K ) -1-1-> ( 1 ... N ) } C_ { f | f : ( 1 ... K ) --> ( 1 ... N ) } | 
						
							| 5 | 4 2 1 | 3sstr4i |  |-  T C_ S | 
						
							| 6 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 7 |  | fzfi |  |-  ( 1 ... K ) e. Fin | 
						
							| 8 |  | mapvalg |  |-  ( ( ( 1 ... N ) e. Fin /\ ( 1 ... K ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... K ) ) = { f | f : ( 1 ... K ) --> ( 1 ... N ) } ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( ( 1 ... N ) ^m ( 1 ... K ) ) = { f | f : ( 1 ... K ) --> ( 1 ... N ) } | 
						
							| 10 | 1 9 | eqtr4i |  |-  S = ( ( 1 ... N ) ^m ( 1 ... K ) ) | 
						
							| 11 |  | mapfi |  |-  ( ( ( 1 ... N ) e. Fin /\ ( 1 ... K ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... K ) ) e. Fin ) | 
						
							| 12 | 6 7 11 | mp2an |  |-  ( ( 1 ... N ) ^m ( 1 ... K ) ) e. Fin | 
						
							| 13 | 10 12 | eqeltri |  |-  S e. Fin | 
						
							| 14 |  | elfz1end |  |-  ( N e. NN <-> N e. ( 1 ... N ) ) | 
						
							| 15 |  | ne0i |  |-  ( N e. ( 1 ... N ) -> ( 1 ... N ) =/= (/) ) | 
						
							| 16 | 14 15 | sylbi |  |-  ( N e. NN -> ( 1 ... N ) =/= (/) ) | 
						
							| 17 | 10 | eqeq1i |  |-  ( S = (/) <-> ( ( 1 ... N ) ^m ( 1 ... K ) ) = (/) ) | 
						
							| 18 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 19 |  | ovex |  |-  ( 1 ... K ) e. _V | 
						
							| 20 | 18 19 | map0 |  |-  ( ( ( 1 ... N ) ^m ( 1 ... K ) ) = (/) <-> ( ( 1 ... N ) = (/) /\ ( 1 ... K ) =/= (/) ) ) | 
						
							| 21 | 20 | simplbi |  |-  ( ( ( 1 ... N ) ^m ( 1 ... K ) ) = (/) -> ( 1 ... N ) = (/) ) | 
						
							| 22 | 17 21 | sylbi |  |-  ( S = (/) -> ( 1 ... N ) = (/) ) | 
						
							| 23 | 22 | necon3i |  |-  ( ( 1 ... N ) =/= (/) -> S =/= (/) ) | 
						
							| 24 | 16 23 | syl |  |-  ( N e. NN -> S =/= (/) ) | 
						
							| 25 | 5 13 24 | 3pm3.2i |  |-  ( T C_ S /\ S e. Fin /\ ( N e. NN -> S =/= (/) ) ) |