Metamath Proof Explorer


Theorem bitr

Description: Theorem *4.22 of WhiteheadRussell p. 117. bitri in closed form. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion bitr
|- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) )

Proof

Step Hyp Ref Expression
1 bibi1
 |-  ( ( ph <-> ps ) -> ( ( ph <-> ch ) <-> ( ps <-> ch ) ) )
2 1 biimpar
 |-  ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) )