Description: Theorem *4.22 of WhiteheadRussell p. 117. bitri in closed form. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | bitr | |- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 | |- ( ( ph <-> ps ) -> ( ( ph <-> ch ) <-> ( ps <-> ch ) ) ) |
|
2 | 1 | biimpar | |- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) ) |