Metamath Proof Explorer


Theorem bitr2d

Description: Deduction form of bitr2i . (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses bitr2d.1
|- ( ph -> ( ps <-> ch ) )
bitr2d.2
|- ( ph -> ( ch <-> th ) )
Assertion bitr2d
|- ( ph -> ( th <-> ps ) )

Proof

Step Hyp Ref Expression
1 bitr2d.1
 |-  ( ph -> ( ps <-> ch ) )
2 bitr2d.2
 |-  ( ph -> ( ch <-> th ) )
3 1 2 bitrd
 |-  ( ph -> ( ps <-> th ) )
4 3 bicomd
 |-  ( ph -> ( th <-> ps ) )