Metamath Proof Explorer


Theorem bitr2i

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitr2i.1
|- ( ph <-> ps )
bitr2i.2
|- ( ps <-> ch )
Assertion bitr2i
|- ( ch <-> ph )

Proof

Step Hyp Ref Expression
1 bitr2i.1
 |-  ( ph <-> ps )
2 bitr2i.2
 |-  ( ps <-> ch )
3 1 2 bitri
 |-  ( ph <-> ch )
4 3 bicomi
 |-  ( ch <-> ph )