Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr2i.1 | |- ( ph <-> ps ) |
|
| bitr2i.2 | |- ( ps <-> ch ) |
||
| Assertion | bitr2i | |- ( ch <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 | |- ( ph <-> ps ) |
|
| 2 | bitr2i.2 | |- ( ps <-> ch ) |
|
| 3 | 1 2 | bitri | |- ( ph <-> ch ) |
| 4 | 3 | bicomi | |- ( ch <-> ph ) |