Metamath Proof Explorer


Theorem bitr2id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypotheses bitr2id.1
|- ( ph <-> ps )
bitr2id.2
|- ( ch -> ( ps <-> th ) )
Assertion bitr2id
|- ( ch -> ( th <-> ph ) )

Proof

Step Hyp Ref Expression
1 bitr2id.1
 |-  ( ph <-> ps )
2 bitr2id.2
 |-  ( ch -> ( ps <-> th ) )
3 1 2 bitrid
 |-  ( ch -> ( ph <-> th ) )
4 3 bicomd
 |-  ( ch -> ( th <-> ph ) )