Description: An inference from transitive law for logical equivalence. (Contributed by NM, 2-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr3i.1 | |- ( ps <-> ph ) |
|
| bitr3i.2 | |- ( ps <-> ch ) |
||
| Assertion | bitr3i | |- ( ph <-> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 | |- ( ps <-> ph ) |
|
| 2 | bitr3i.2 | |- ( ps <-> ch ) |
|
| 3 | 1 | bicomi | |- ( ph <-> ps ) |
| 4 | 3 2 | bitri | |- ( ph <-> ch ) |