Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr4i.1 | |- ( ph <-> ps ) |
|
| bitr4i.2 | |- ( ch <-> ps ) |
||
| Assertion | bitr4i | |- ( ph <-> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 | |- ( ph <-> ps ) |
|
| 2 | bitr4i.2 | |- ( ch <-> ps ) |
|
| 3 | 2 | bicomi | |- ( ps <-> ch ) |
| 4 | 1 3 | bitri | |- ( ph <-> ch ) |