Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr4id.2 | |- ( ps <-> ch ) |
|
| bitr4id.1 | |- ( ph -> ( th <-> ch ) ) |
||
| Assertion | bitr4id | |- ( ph -> ( ps <-> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.2 | |- ( ps <-> ch ) |
|
| 2 | bitr4id.1 | |- ( ph -> ( th <-> ch ) ) |
|
| 3 | 1 | bicomi | |- ( ch <-> ps ) |
| 4 | 2 3 | bitr2di | |- ( ph -> ( ps <-> th ) ) |