Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> 2 || ( 2 x. N ) ) |
3 |
1 2
|
mpan |
|- ( N e. ZZ -> 2 || ( 2 x. N ) ) |
4 |
1
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
5 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
6 |
4 5
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
7 |
|
2nn |
|- 2 e. NN |
8 |
7
|
a1i |
|- ( N e. ZZ -> 2 e. NN ) |
9 |
|
1lt2 |
|- 1 < 2 |
10 |
9
|
a1i |
|- ( N e. ZZ -> 1 < 2 ) |
11 |
|
ndvdsp1 |
|- ( ( ( 2 x. N ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( 2 x. N ) -> -. 2 || ( ( 2 x. N ) + 1 ) ) ) |
12 |
6 8 10 11
|
syl3anc |
|- ( N e. ZZ -> ( 2 || ( 2 x. N ) -> -. 2 || ( ( 2 x. N ) + 1 ) ) ) |
13 |
3 12
|
mpd |
|- ( N e. ZZ -> -. 2 || ( ( 2 x. N ) + 1 ) ) |
14 |
6
|
peano2zd |
|- ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ ) |
15 |
|
bits0 |
|- ( ( ( 2 x. N ) + 1 ) e. ZZ -> ( 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> -. 2 || ( ( 2 x. N ) + 1 ) ) ) |
16 |
14 15
|
syl |
|- ( N e. ZZ -> ( 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> -. 2 || ( ( 2 x. N ) + 1 ) ) ) |
17 |
13 16
|
mpbird |
|- ( N e. ZZ -> 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) ) |