| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( k e. NN0 |-> ( bits ` k ) ) = ( k e. NN0 |-> ( bits ` k ) ) | 
						
							| 2 |  | bitsss |  |-  ( bits ` k ) C_ NN0 | 
						
							| 3 | 2 | a1i |  |-  ( k e. NN0 -> ( bits ` k ) C_ NN0 ) | 
						
							| 4 |  | bitsfi |  |-  ( k e. NN0 -> ( bits ` k ) e. Fin ) | 
						
							| 5 |  | elfpw |  |-  ( ( bits ` k ) e. ( ~P NN0 i^i Fin ) <-> ( ( bits ` k ) C_ NN0 /\ ( bits ` k ) e. Fin ) ) | 
						
							| 6 | 3 4 5 | sylanbrc |  |-  ( k e. NN0 -> ( bits ` k ) e. ( ~P NN0 i^i Fin ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( bits ` k ) e. ( ~P NN0 i^i Fin ) ) | 
						
							| 8 |  | elinel2 |  |-  ( x e. ( ~P NN0 i^i Fin ) -> x e. Fin ) | 
						
							| 9 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 10 | 9 | a1i |  |-  ( ( x e. ( ~P NN0 i^i Fin ) /\ n e. x ) -> 2 e. NN0 ) | 
						
							| 11 |  | elfpw |  |-  ( x e. ( ~P NN0 i^i Fin ) <-> ( x C_ NN0 /\ x e. Fin ) ) | 
						
							| 12 | 11 | simplbi |  |-  ( x e. ( ~P NN0 i^i Fin ) -> x C_ NN0 ) | 
						
							| 13 | 12 | sselda |  |-  ( ( x e. ( ~P NN0 i^i Fin ) /\ n e. x ) -> n e. NN0 ) | 
						
							| 14 | 10 13 | nn0expcld |  |-  ( ( x e. ( ~P NN0 i^i Fin ) /\ n e. x ) -> ( 2 ^ n ) e. NN0 ) | 
						
							| 15 | 8 14 | fsumnn0cl |  |-  ( x e. ( ~P NN0 i^i Fin ) -> sum_ n e. x ( 2 ^ n ) e. NN0 ) | 
						
							| 16 | 15 | adantl |  |-  ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> sum_ n e. x ( 2 ^ n ) e. NN0 ) | 
						
							| 17 |  | bitsinv2 |  |-  ( x e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ n e. x ( 2 ^ n ) ) = x ) | 
						
							| 18 | 17 | eqcomd |  |-  ( x e. ( ~P NN0 i^i Fin ) -> x = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) | 
						
							| 19 | 18 | ad2antll |  |-  ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> x = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( k = sum_ n e. x ( 2 ^ n ) -> ( bits ` k ) = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( k = sum_ n e. x ( 2 ^ n ) -> ( x = ( bits ` k ) <-> x = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) ) | 
						
							| 22 | 19 21 | syl5ibrcom |  |-  ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> ( k = sum_ n e. x ( 2 ^ n ) -> x = ( bits ` k ) ) ) | 
						
							| 23 |  | bitsinv1 |  |-  ( k e. NN0 -> sum_ n e. ( bits ` k ) ( 2 ^ n ) = k ) | 
						
							| 24 | 23 | eqcomd |  |-  ( k e. NN0 -> k = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) | 
						
							| 25 | 24 | ad2antrl |  |-  ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> k = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) | 
						
							| 26 |  | sumeq1 |  |-  ( x = ( bits ` k ) -> sum_ n e. x ( 2 ^ n ) = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( x = ( bits ` k ) -> ( k = sum_ n e. x ( 2 ^ n ) <-> k = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) ) | 
						
							| 28 | 25 27 | syl5ibrcom |  |-  ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> ( x = ( bits ` k ) -> k = sum_ n e. x ( 2 ^ n ) ) ) | 
						
							| 29 | 22 28 | impbid |  |-  ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> ( k = sum_ n e. x ( 2 ^ n ) <-> x = ( bits ` k ) ) ) | 
						
							| 30 | 1 7 16 29 | f1ocnv2d |  |-  ( T. -> ( ( k e. NN0 |-> ( bits ` k ) ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( k e. NN0 |-> ( bits ` k ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) ) | 
						
							| 31 | 30 | simpld |  |-  ( T. -> ( k e. NN0 |-> ( bits ` k ) ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) ) | 
						
							| 32 |  | bitsf |  |-  bits : ZZ --> ~P NN0 | 
						
							| 33 | 32 | a1i |  |-  ( T. -> bits : ZZ --> ~P NN0 ) | 
						
							| 34 | 33 | feqmptd |  |-  ( T. -> bits = ( k e. ZZ |-> ( bits ` k ) ) ) | 
						
							| 35 | 34 | reseq1d |  |-  ( T. -> ( bits |` NN0 ) = ( ( k e. ZZ |-> ( bits ` k ) ) |` NN0 ) ) | 
						
							| 36 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 37 |  | resmpt |  |-  ( NN0 C_ ZZ -> ( ( k e. ZZ |-> ( bits ` k ) ) |` NN0 ) = ( k e. NN0 |-> ( bits ` k ) ) ) | 
						
							| 38 | 36 37 | ax-mp |  |-  ( ( k e. ZZ |-> ( bits ` k ) ) |` NN0 ) = ( k e. NN0 |-> ( bits ` k ) ) | 
						
							| 39 | 35 38 | eqtrdi |  |-  ( T. -> ( bits |` NN0 ) = ( k e. NN0 |-> ( bits ` k ) ) ) | 
						
							| 40 | 39 | f1oeq1d |  |-  ( T. -> ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) <-> ( k e. NN0 |-> ( bits ` k ) ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) ) ) | 
						
							| 41 | 31 40 | mpbird |  |-  ( T. -> ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) ) | 
						
							| 42 | 39 | cnveqd |  |-  ( T. -> `' ( bits |` NN0 ) = `' ( k e. NN0 |-> ( bits ` k ) ) ) | 
						
							| 43 | 30 | simprd |  |-  ( T. -> `' ( k e. NN0 |-> ( bits ` k ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) | 
						
							| 44 | 42 43 | eqtrd |  |-  ( T. -> `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) | 
						
							| 45 | 41 44 | jca |  |-  ( T. -> ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) ) | 
						
							| 46 | 45 | mptru |  |-  ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) |