| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( N e. NN0 -> 2 e. RR ) | 
						
							| 4 |  | 1lt2 |  |-  1 < 2 | 
						
							| 5 | 4 | a1i |  |-  ( N e. NN0 -> 1 < 2 ) | 
						
							| 6 |  | expnbnd |  |-  ( ( N e. RR /\ 2 e. RR /\ 1 < 2 ) -> E. m e. NN N < ( 2 ^ m ) ) | 
						
							| 7 | 1 3 5 6 | syl3anc |  |-  ( N e. NN0 -> E. m e. NN N < ( 2 ^ m ) ) | 
						
							| 8 |  | fzofi |  |-  ( 0 ..^ m ) e. Fin | 
						
							| 9 |  | simpl |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. NN0 ) | 
						
							| 10 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 11 | 9 10 | eleqtrdi |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 12 |  | 2nn |  |-  2 e. NN | 
						
							| 13 | 12 | a1i |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> 2 e. NN ) | 
						
							| 14 |  | simprl |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> m e. NN ) | 
						
							| 15 | 14 | nnnn0d |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> m e. NN0 ) | 
						
							| 16 | 13 15 | nnexpcld |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( 2 ^ m ) e. NN ) | 
						
							| 17 | 16 | nnzd |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( 2 ^ m ) e. ZZ ) | 
						
							| 18 |  | simprr |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N < ( 2 ^ m ) ) | 
						
							| 19 |  | elfzo2 |  |-  ( N e. ( 0 ..^ ( 2 ^ m ) ) <-> ( N e. ( ZZ>= ` 0 ) /\ ( 2 ^ m ) e. ZZ /\ N < ( 2 ^ m ) ) ) | 
						
							| 20 | 11 17 18 19 | syl3anbrc |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. ( 0 ..^ ( 2 ^ m ) ) ) | 
						
							| 21 | 9 | nn0zd |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. ZZ ) | 
						
							| 22 |  | bitsfzo |  |-  ( ( N e. ZZ /\ m e. NN0 ) -> ( N e. ( 0 ..^ ( 2 ^ m ) ) <-> ( bits ` N ) C_ ( 0 ..^ m ) ) ) | 
						
							| 23 | 21 15 22 | syl2anc |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( N e. ( 0 ..^ ( 2 ^ m ) ) <-> ( bits ` N ) C_ ( 0 ..^ m ) ) ) | 
						
							| 24 | 20 23 | mpbid |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( bits ` N ) C_ ( 0 ..^ m ) ) | 
						
							| 25 |  | ssfi |  |-  ( ( ( 0 ..^ m ) e. Fin /\ ( bits ` N ) C_ ( 0 ..^ m ) ) -> ( bits ` N ) e. Fin ) | 
						
							| 26 | 8 24 25 | sylancr |  |-  ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( bits ` N ) e. Fin ) | 
						
							| 27 | 7 26 | rexlimddv |  |-  ( N e. NN0 -> ( bits ` N ) e. Fin ) |