| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 2 |
|
2re |
|- 2 e. RR |
| 3 |
2
|
a1i |
|- ( N e. NN0 -> 2 e. RR ) |
| 4 |
|
1lt2 |
|- 1 < 2 |
| 5 |
4
|
a1i |
|- ( N e. NN0 -> 1 < 2 ) |
| 6 |
|
expnbnd |
|- ( ( N e. RR /\ 2 e. RR /\ 1 < 2 ) -> E. m e. NN N < ( 2 ^ m ) ) |
| 7 |
1 3 5 6
|
syl3anc |
|- ( N e. NN0 -> E. m e. NN N < ( 2 ^ m ) ) |
| 8 |
|
fzofi |
|- ( 0 ..^ m ) e. Fin |
| 9 |
|
simpl |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. NN0 ) |
| 10 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 11 |
9 10
|
eleqtrdi |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. ( ZZ>= ` 0 ) ) |
| 12 |
|
2nn |
|- 2 e. NN |
| 13 |
12
|
a1i |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> 2 e. NN ) |
| 14 |
|
simprl |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> m e. NN ) |
| 15 |
14
|
nnnn0d |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> m e. NN0 ) |
| 16 |
13 15
|
nnexpcld |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( 2 ^ m ) e. NN ) |
| 17 |
16
|
nnzd |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( 2 ^ m ) e. ZZ ) |
| 18 |
|
simprr |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N < ( 2 ^ m ) ) |
| 19 |
|
elfzo2 |
|- ( N e. ( 0 ..^ ( 2 ^ m ) ) <-> ( N e. ( ZZ>= ` 0 ) /\ ( 2 ^ m ) e. ZZ /\ N < ( 2 ^ m ) ) ) |
| 20 |
11 17 18 19
|
syl3anbrc |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. ( 0 ..^ ( 2 ^ m ) ) ) |
| 21 |
9
|
nn0zd |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> N e. ZZ ) |
| 22 |
|
bitsfzo |
|- ( ( N e. ZZ /\ m e. NN0 ) -> ( N e. ( 0 ..^ ( 2 ^ m ) ) <-> ( bits ` N ) C_ ( 0 ..^ m ) ) ) |
| 23 |
21 15 22
|
syl2anc |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( N e. ( 0 ..^ ( 2 ^ m ) ) <-> ( bits ` N ) C_ ( 0 ..^ m ) ) ) |
| 24 |
20 23
|
mpbid |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( bits ` N ) C_ ( 0 ..^ m ) ) |
| 25 |
|
ssfi |
|- ( ( ( 0 ..^ m ) e. Fin /\ ( bits ` N ) C_ ( 0 ..^ m ) ) -> ( bits ` N ) e. Fin ) |
| 26 |
8 24 25
|
sylancr |
|- ( ( N e. NN0 /\ ( m e. NN /\ N < ( 2 ^ m ) ) ) -> ( bits ` N ) e. Fin ) |
| 27 |
7 26
|
rexlimddv |
|- ( N e. NN0 -> ( bits ` N ) e. Fin ) |