| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bitsinv.k |  |-  K = `' ( bits |` NN0 ) | 
						
							| 2 |  | sumeq1 |  |-  ( x = A -> sum_ k e. x ( 2 ^ k ) = sum_ k e. A ( 2 ^ k ) ) | 
						
							| 3 |  | bitsf1ocnv |  |-  ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ k e. x ( 2 ^ k ) ) ) | 
						
							| 4 | 3 | simpri |  |-  `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ k e. x ( 2 ^ k ) ) | 
						
							| 5 | 1 4 | eqtri |  |-  K = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ k e. x ( 2 ^ k ) ) | 
						
							| 6 |  | sumex |  |-  sum_ k e. A ( 2 ^ k ) e. _V | 
						
							| 7 | 2 5 6 | fvmpt |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( K ` A ) = sum_ k e. A ( 2 ^ k ) ) |