Step |
Hyp |
Ref |
Expression |
1 |
|
bitsinv.k |
|- K = `' ( bits |` NN0 ) |
2 |
|
sumeq1 |
|- ( x = A -> sum_ k e. x ( 2 ^ k ) = sum_ k e. A ( 2 ^ k ) ) |
3 |
|
bitsf1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ k e. x ( 2 ^ k ) ) ) |
4 |
3
|
simpri |
|- `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ k e. x ( 2 ^ k ) ) |
5 |
1 4
|
eqtri |
|- K = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ k e. x ( 2 ^ k ) ) |
6 |
|
sumex |
|- sum_ k e. A ( 2 ^ k ) e. _V |
7 |
2 5 6
|
fvmpt |
|- ( A e. ( ~P NN0 i^i Fin ) -> ( K ` A ) = sum_ k e. A ( 2 ^ k ) ) |