| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = 0 -> ( 0 ..^ x ) = ( 0 ..^ 0 ) ) |
| 2 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 3 |
1 2
|
eqtrdi |
|- ( x = 0 -> ( 0 ..^ x ) = (/) ) |
| 4 |
3
|
ineq2d |
|- ( x = 0 -> ( ( bits ` N ) i^i ( 0 ..^ x ) ) = ( ( bits ` N ) i^i (/) ) ) |
| 5 |
|
in0 |
|- ( ( bits ` N ) i^i (/) ) = (/) |
| 6 |
4 5
|
eqtrdi |
|- ( x = 0 -> ( ( bits ` N ) i^i ( 0 ..^ x ) ) = (/) ) |
| 7 |
6
|
sumeq1d |
|- ( x = 0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = sum_ n e. (/) ( 2 ^ n ) ) |
| 8 |
|
sum0 |
|- sum_ n e. (/) ( 2 ^ n ) = 0 |
| 9 |
7 8
|
eqtrdi |
|- ( x = 0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = 0 ) |
| 10 |
|
oveq2 |
|- ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) |
| 11 |
|
2cn |
|- 2 e. CC |
| 12 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
| 13 |
11 12
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
| 14 |
10 13
|
eqtrdi |
|- ( x = 0 -> ( 2 ^ x ) = 1 ) |
| 15 |
14
|
oveq2d |
|- ( x = 0 -> ( N mod ( 2 ^ x ) ) = ( N mod 1 ) ) |
| 16 |
9 15
|
eqeq12d |
|- ( x = 0 -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) <-> 0 = ( N mod 1 ) ) ) |
| 17 |
16
|
imbi2d |
|- ( x = 0 -> ( ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) ) <-> ( N e. NN0 -> 0 = ( N mod 1 ) ) ) ) |
| 18 |
|
oveq2 |
|- ( x = k -> ( 0 ..^ x ) = ( 0 ..^ k ) ) |
| 19 |
18
|
ineq2d |
|- ( x = k -> ( ( bits ` N ) i^i ( 0 ..^ x ) ) = ( ( bits ` N ) i^i ( 0 ..^ k ) ) ) |
| 20 |
19
|
sumeq1d |
|- ( x = k -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) ) |
| 21 |
|
oveq2 |
|- ( x = k -> ( 2 ^ x ) = ( 2 ^ k ) ) |
| 22 |
21
|
oveq2d |
|- ( x = k -> ( N mod ( 2 ^ x ) ) = ( N mod ( 2 ^ k ) ) ) |
| 23 |
20 22
|
eqeq12d |
|- ( x = k -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) <-> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) = ( N mod ( 2 ^ k ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( x = k -> ( ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) ) <-> ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) = ( N mod ( 2 ^ k ) ) ) ) ) |
| 25 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( k + 1 ) ) ) |
| 26 |
25
|
ineq2d |
|- ( x = ( k + 1 ) -> ( ( bits ` N ) i^i ( 0 ..^ x ) ) = ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) |
| 27 |
26
|
sumeq1d |
|- ( x = ( k + 1 ) -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) ) |
| 28 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( k + 1 ) ) ) |
| 29 |
28
|
oveq2d |
|- ( x = ( k + 1 ) -> ( N mod ( 2 ^ x ) ) = ( N mod ( 2 ^ ( k + 1 ) ) ) ) |
| 30 |
27 29
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) <-> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( N mod ( 2 ^ ( k + 1 ) ) ) ) ) |
| 31 |
30
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) ) <-> ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( N mod ( 2 ^ ( k + 1 ) ) ) ) ) ) |
| 32 |
|
oveq2 |
|- ( x = N -> ( 0 ..^ x ) = ( 0 ..^ N ) ) |
| 33 |
32
|
ineq2d |
|- ( x = N -> ( ( bits ` N ) i^i ( 0 ..^ x ) ) = ( ( bits ` N ) i^i ( 0 ..^ N ) ) ) |
| 34 |
33
|
sumeq1d |
|- ( x = N -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ N ) ) ( 2 ^ n ) ) |
| 35 |
|
oveq2 |
|- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
| 36 |
35
|
oveq2d |
|- ( x = N -> ( N mod ( 2 ^ x ) ) = ( N mod ( 2 ^ N ) ) ) |
| 37 |
34 36
|
eqeq12d |
|- ( x = N -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) <-> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ N ) ) ( 2 ^ n ) = ( N mod ( 2 ^ N ) ) ) ) |
| 38 |
37
|
imbi2d |
|- ( x = N -> ( ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ x ) ) ( 2 ^ n ) = ( N mod ( 2 ^ x ) ) ) <-> ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ N ) ) ( 2 ^ n ) = ( N mod ( 2 ^ N ) ) ) ) ) |
| 39 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 40 |
|
zmod10 |
|- ( N e. ZZ -> ( N mod 1 ) = 0 ) |
| 41 |
39 40
|
syl |
|- ( N e. NN0 -> ( N mod 1 ) = 0 ) |
| 42 |
41
|
eqcomd |
|- ( N e. NN0 -> 0 = ( N mod 1 ) ) |
| 43 |
|
oveq1 |
|- ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) = ( N mod ( 2 ^ k ) ) -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) = ( ( N mod ( 2 ^ k ) ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) ) |
| 44 |
|
fzonel |
|- -. k e. ( 0 ..^ k ) |
| 45 |
44
|
a1i |
|- ( ( N e. NN0 /\ k e. NN0 ) -> -. k e. ( 0 ..^ k ) ) |
| 46 |
|
disjsn |
|- ( ( ( 0 ..^ k ) i^i { k } ) = (/) <-> -. k e. ( 0 ..^ k ) ) |
| 47 |
45 46
|
sylibr |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( 0 ..^ k ) i^i { k } ) = (/) ) |
| 48 |
47
|
ineq2d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( bits ` N ) i^i ( ( 0 ..^ k ) i^i { k } ) ) = ( ( bits ` N ) i^i (/) ) ) |
| 49 |
|
inindi |
|- ( ( bits ` N ) i^i ( ( 0 ..^ k ) i^i { k } ) ) = ( ( ( bits ` N ) i^i ( 0 ..^ k ) ) i^i ( ( bits ` N ) i^i { k } ) ) |
| 50 |
48 49 5
|
3eqtr3g |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( bits ` N ) i^i ( 0 ..^ k ) ) i^i ( ( bits ` N ) i^i { k } ) ) = (/) ) |
| 51 |
|
simpr |
|- ( ( N e. NN0 /\ k e. NN0 ) -> k e. NN0 ) |
| 52 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 53 |
51 52
|
eleqtrdi |
|- ( ( N e. NN0 /\ k e. NN0 ) -> k e. ( ZZ>= ` 0 ) ) |
| 54 |
|
fzosplitsn |
|- ( k e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( k + 1 ) ) = ( ( 0 ..^ k ) u. { k } ) ) |
| 55 |
53 54
|
syl |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( 0 ..^ ( k + 1 ) ) = ( ( 0 ..^ k ) u. { k } ) ) |
| 56 |
55
|
ineq2d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) = ( ( bits ` N ) i^i ( ( 0 ..^ k ) u. { k } ) ) ) |
| 57 |
|
indi |
|- ( ( bits ` N ) i^i ( ( 0 ..^ k ) u. { k } ) ) = ( ( ( bits ` N ) i^i ( 0 ..^ k ) ) u. ( ( bits ` N ) i^i { k } ) ) |
| 58 |
56 57
|
eqtrdi |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) = ( ( ( bits ` N ) i^i ( 0 ..^ k ) ) u. ( ( bits ` N ) i^i { k } ) ) ) |
| 59 |
|
fzofi |
|- ( 0 ..^ ( k + 1 ) ) e. Fin |
| 60 |
|
inss2 |
|- ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) C_ ( 0 ..^ ( k + 1 ) ) |
| 61 |
|
ssfi |
|- ( ( ( 0 ..^ ( k + 1 ) ) e. Fin /\ ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) C_ ( 0 ..^ ( k + 1 ) ) ) -> ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) e. Fin ) |
| 62 |
59 60 61
|
mp2an |
|- ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) e. Fin |
| 63 |
62
|
a1i |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) e. Fin ) |
| 64 |
|
2nn |
|- 2 e. NN |
| 65 |
64
|
a1i |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> 2 e. NN ) |
| 66 |
|
simpr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) |
| 67 |
66
|
elin2d |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> n e. ( 0 ..^ ( k + 1 ) ) ) |
| 68 |
|
elfzouz |
|- ( n e. ( 0 ..^ ( k + 1 ) ) -> n e. ( ZZ>= ` 0 ) ) |
| 69 |
67 68
|
syl |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> n e. ( ZZ>= ` 0 ) ) |
| 70 |
69 52
|
eleqtrrdi |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> n e. NN0 ) |
| 71 |
65 70
|
nnexpcld |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> ( 2 ^ n ) e. NN ) |
| 72 |
71
|
nncnd |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ) -> ( 2 ^ n ) e. CC ) |
| 73 |
50 58 63 72
|
fsumsplit |
|- ( ( N e. NN0 /\ k e. NN0 ) -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) ) |
| 74 |
|
bitsinv1lem |
|- ( ( N e. ZZ /\ k e. NN0 ) -> ( N mod ( 2 ^ ( k + 1 ) ) ) = ( ( N mod ( 2 ^ k ) ) + if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) ) ) |
| 75 |
39 74
|
sylan |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( N mod ( 2 ^ ( k + 1 ) ) ) = ( ( N mod ( 2 ^ k ) ) + if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) ) ) |
| 76 |
|
eqeq2 |
|- ( ( 2 ^ k ) = if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) -> ( sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = ( 2 ^ k ) <-> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) ) ) |
| 77 |
|
eqeq2 |
|- ( 0 = if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) -> ( sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = 0 <-> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) ) ) |
| 78 |
|
simpr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> k e. ( bits ` N ) ) |
| 79 |
78
|
snssd |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> { k } C_ ( bits ` N ) ) |
| 80 |
|
sseqin2 |
|- ( { k } C_ ( bits ` N ) <-> ( ( bits ` N ) i^i { k } ) = { k } ) |
| 81 |
79 80
|
sylib |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> ( ( bits ` N ) i^i { k } ) = { k } ) |
| 82 |
81
|
sumeq1d |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = sum_ n e. { k } ( 2 ^ n ) ) |
| 83 |
|
simplr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> k e. NN0 ) |
| 84 |
64
|
a1i |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> 2 e. NN ) |
| 85 |
84 83
|
nnexpcld |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> ( 2 ^ k ) e. NN ) |
| 86 |
85
|
nncnd |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> ( 2 ^ k ) e. CC ) |
| 87 |
|
oveq2 |
|- ( n = k -> ( 2 ^ n ) = ( 2 ^ k ) ) |
| 88 |
87
|
sumsn |
|- ( ( k e. NN0 /\ ( 2 ^ k ) e. CC ) -> sum_ n e. { k } ( 2 ^ n ) = ( 2 ^ k ) ) |
| 89 |
83 86 88
|
syl2anc |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> sum_ n e. { k } ( 2 ^ n ) = ( 2 ^ k ) ) |
| 90 |
82 89
|
eqtrd |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ k e. ( bits ` N ) ) -> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = ( 2 ^ k ) ) |
| 91 |
|
simpr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ -. k e. ( bits ` N ) ) -> -. k e. ( bits ` N ) ) |
| 92 |
|
disjsn |
|- ( ( ( bits ` N ) i^i { k } ) = (/) <-> -. k e. ( bits ` N ) ) |
| 93 |
91 92
|
sylibr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ -. k e. ( bits ` N ) ) -> ( ( bits ` N ) i^i { k } ) = (/) ) |
| 94 |
93
|
sumeq1d |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ -. k e. ( bits ` N ) ) -> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = sum_ n e. (/) ( 2 ^ n ) ) |
| 95 |
94 8
|
eqtrdi |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ -. k e. ( bits ` N ) ) -> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = 0 ) |
| 96 |
76 77 90 95
|
ifbothda |
|- ( ( N e. NN0 /\ k e. NN0 ) -> sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) = if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) ) |
| 97 |
96
|
oveq2d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N mod ( 2 ^ k ) ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) = ( ( N mod ( 2 ^ k ) ) + if ( k e. ( bits ` N ) , ( 2 ^ k ) , 0 ) ) ) |
| 98 |
75 97
|
eqtr4d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( N mod ( 2 ^ ( k + 1 ) ) ) = ( ( N mod ( 2 ^ k ) ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) ) |
| 99 |
73 98
|
eqeq12d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( N mod ( 2 ^ ( k + 1 ) ) ) <-> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) = ( ( N mod ( 2 ^ k ) ) + sum_ n e. ( ( bits ` N ) i^i { k } ) ( 2 ^ n ) ) ) ) |
| 100 |
43 99
|
imbitrrid |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) = ( N mod ( 2 ^ k ) ) -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( N mod ( 2 ^ ( k + 1 ) ) ) ) ) |
| 101 |
100
|
expcom |
|- ( k e. NN0 -> ( N e. NN0 -> ( sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) = ( N mod ( 2 ^ k ) ) -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( N mod ( 2 ^ ( k + 1 ) ) ) ) ) ) |
| 102 |
101
|
a2d |
|- ( k e. NN0 -> ( ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ k ) ) ( 2 ^ n ) = ( N mod ( 2 ^ k ) ) ) -> ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ ( k + 1 ) ) ) ( 2 ^ n ) = ( N mod ( 2 ^ ( k + 1 ) ) ) ) ) ) |
| 103 |
17 24 31 38 42 102
|
nn0ind |
|- ( N e. NN0 -> ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ N ) ) ( 2 ^ n ) = ( N mod ( 2 ^ N ) ) ) ) |
| 104 |
103
|
pm2.43i |
|- ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ N ) ) ( 2 ^ n ) = ( N mod ( 2 ^ N ) ) ) |
| 105 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
| 106 |
105 52
|
eleqtrdi |
|- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 107 |
64
|
a1i |
|- ( N e. NN0 -> 2 e. NN ) |
| 108 |
107 105
|
nnexpcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN ) |
| 109 |
108
|
nnzd |
|- ( N e. NN0 -> ( 2 ^ N ) e. ZZ ) |
| 110 |
|
2z |
|- 2 e. ZZ |
| 111 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 112 |
110 111
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 113 |
|
bernneq3 |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N < ( 2 ^ N ) ) |
| 114 |
112 113
|
mpan |
|- ( N e. NN0 -> N < ( 2 ^ N ) ) |
| 115 |
|
elfzo2 |
|- ( N e. ( 0 ..^ ( 2 ^ N ) ) <-> ( N e. ( ZZ>= ` 0 ) /\ ( 2 ^ N ) e. ZZ /\ N < ( 2 ^ N ) ) ) |
| 116 |
106 109 114 115
|
syl3anbrc |
|- ( N e. NN0 -> N e. ( 0 ..^ ( 2 ^ N ) ) ) |
| 117 |
|
bitsfzo |
|- ( ( N e. ZZ /\ N e. NN0 ) -> ( N e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` N ) C_ ( 0 ..^ N ) ) ) |
| 118 |
39 105 117
|
syl2anc |
|- ( N e. NN0 -> ( N e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` N ) C_ ( 0 ..^ N ) ) ) |
| 119 |
116 118
|
mpbid |
|- ( N e. NN0 -> ( bits ` N ) C_ ( 0 ..^ N ) ) |
| 120 |
|
dfss2 |
|- ( ( bits ` N ) C_ ( 0 ..^ N ) <-> ( ( bits ` N ) i^i ( 0 ..^ N ) ) = ( bits ` N ) ) |
| 121 |
119 120
|
sylib |
|- ( N e. NN0 -> ( ( bits ` N ) i^i ( 0 ..^ N ) ) = ( bits ` N ) ) |
| 122 |
121
|
sumeq1d |
|- ( N e. NN0 -> sum_ n e. ( ( bits ` N ) i^i ( 0 ..^ N ) ) ( 2 ^ n ) = sum_ n e. ( bits ` N ) ( 2 ^ n ) ) |
| 123 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 124 |
|
2rp |
|- 2 e. RR+ |
| 125 |
124
|
a1i |
|- ( N e. NN0 -> 2 e. RR+ ) |
| 126 |
125 39
|
rpexpcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. RR+ ) |
| 127 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 128 |
|
modid |
|- ( ( ( N e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ N /\ N < ( 2 ^ N ) ) ) -> ( N mod ( 2 ^ N ) ) = N ) |
| 129 |
123 126 127 114 128
|
syl22anc |
|- ( N e. NN0 -> ( N mod ( 2 ^ N ) ) = N ) |
| 130 |
104 122 129
|
3eqtr3d |
|- ( N e. NN0 -> sum_ n e. ( bits ` N ) ( 2 ^ n ) = N ) |