| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elinel2 |  |-  ( A e. ( ~P NN0 i^i Fin ) -> A e. Fin ) | 
						
							| 2 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 3 | 2 | a1i |  |-  ( ( A e. ( ~P NN0 i^i Fin ) /\ n e. A ) -> 2 e. NN0 ) | 
						
							| 4 |  | elfpw |  |-  ( A e. ( ~P NN0 i^i Fin ) <-> ( A C_ NN0 /\ A e. Fin ) ) | 
						
							| 5 | 4 | simplbi |  |-  ( A e. ( ~P NN0 i^i Fin ) -> A C_ NN0 ) | 
						
							| 6 | 5 | sselda |  |-  ( ( A e. ( ~P NN0 i^i Fin ) /\ n e. A ) -> n e. NN0 ) | 
						
							| 7 | 3 6 | nn0expcld |  |-  ( ( A e. ( ~P NN0 i^i Fin ) /\ n e. A ) -> ( 2 ^ n ) e. NN0 ) | 
						
							| 8 | 1 7 | fsumnn0cl |  |-  ( A e. ( ~P NN0 i^i Fin ) -> sum_ n e. A ( 2 ^ n ) e. NN0 ) | 
						
							| 9 |  | bitsinv1 |  |-  ( sum_ n e. A ( 2 ^ n ) e. NN0 -> sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) = sum_ n e. A ( 2 ^ n ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( A e. ( ~P NN0 i^i Fin ) -> sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) = sum_ n e. A ( 2 ^ n ) ) | 
						
							| 11 |  | bitsss |  |-  ( bits ` sum_ n e. A ( 2 ^ n ) ) C_ NN0 | 
						
							| 12 | 11 | a1i |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ n e. A ( 2 ^ n ) ) C_ NN0 ) | 
						
							| 13 |  | bitsfi |  |-  ( sum_ n e. A ( 2 ^ n ) e. NN0 -> ( bits ` sum_ n e. A ( 2 ^ n ) ) e. Fin ) | 
						
							| 14 | 8 13 | syl |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ n e. A ( 2 ^ n ) ) e. Fin ) | 
						
							| 15 |  | elfpw |  |-  ( ( bits ` sum_ n e. A ( 2 ^ n ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( bits ` sum_ n e. A ( 2 ^ n ) ) C_ NN0 /\ ( bits ` sum_ n e. A ( 2 ^ n ) ) e. Fin ) ) | 
						
							| 16 | 12 14 15 | sylanbrc |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ n e. A ( 2 ^ n ) ) e. ( ~P NN0 i^i Fin ) ) | 
						
							| 17 |  | oveq2 |  |-  ( n = m -> ( 2 ^ n ) = ( 2 ^ m ) ) | 
						
							| 18 | 17 | cbvsumv |  |-  sum_ n e. k ( 2 ^ n ) = sum_ m e. k ( 2 ^ m ) | 
						
							| 19 |  | sumeq1 |  |-  ( k = ( bits ` sum_ n e. A ( 2 ^ n ) ) -> sum_ m e. k ( 2 ^ m ) = sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) ) | 
						
							| 20 | 18 19 | eqtrid |  |-  ( k = ( bits ` sum_ n e. A ( 2 ^ n ) ) -> sum_ n e. k ( 2 ^ n ) = sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) ) | 
						
							| 21 |  | eqid |  |-  ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) = ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) | 
						
							| 22 |  | sumex |  |-  sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) e. _V | 
						
							| 23 | 20 21 22 | fvmpt |  |-  ( ( bits ` sum_ n e. A ( 2 ^ n ) ) e. ( ~P NN0 i^i Fin ) -> ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` ( bits ` sum_ n e. A ( 2 ^ n ) ) ) = sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) ) | 
						
							| 24 | 16 23 | syl |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` ( bits ` sum_ n e. A ( 2 ^ n ) ) ) = sum_ m e. ( bits ` sum_ n e. A ( 2 ^ n ) ) ( 2 ^ m ) ) | 
						
							| 25 |  | sumeq1 |  |-  ( k = A -> sum_ n e. k ( 2 ^ n ) = sum_ n e. A ( 2 ^ n ) ) | 
						
							| 26 |  | sumex |  |-  sum_ n e. A ( 2 ^ n ) e. _V | 
						
							| 27 | 25 21 26 | fvmpt |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` A ) = sum_ n e. A ( 2 ^ n ) ) | 
						
							| 28 | 10 24 27 | 3eqtr4d |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` ( bits ` sum_ n e. A ( 2 ^ n ) ) ) = ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` A ) ) | 
						
							| 29 | 21 | ackbijnn |  |-  ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 | 
						
							| 30 |  | f1of1 |  |-  ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 ) | 
						
							| 31 | 29 30 | mp1i |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 ) | 
						
							| 32 |  | id |  |-  ( A e. ( ~P NN0 i^i Fin ) -> A e. ( ~P NN0 i^i Fin ) ) | 
						
							| 33 |  | f1fveq |  |-  ( ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 /\ ( ( bits ` sum_ n e. A ( 2 ^ n ) ) e. ( ~P NN0 i^i Fin ) /\ A e. ( ~P NN0 i^i Fin ) ) ) -> ( ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` ( bits ` sum_ n e. A ( 2 ^ n ) ) ) = ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` A ) <-> ( bits ` sum_ n e. A ( 2 ^ n ) ) = A ) ) | 
						
							| 34 | 31 16 32 33 | syl12anc |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` ( bits ` sum_ n e. A ( 2 ^ n ) ) ) = ( ( k e. ( ~P NN0 i^i Fin ) |-> sum_ n e. k ( 2 ^ n ) ) ` A ) <-> ( bits ` sum_ n e. A ( 2 ^ n ) ) = A ) ) | 
						
							| 35 | 28 34 | mpbid |  |-  ( A e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ n e. A ( 2 ^ n ) ) = A ) |