Description: Statement 19.21t proved from modalK (obsoleting 19.21v ). (Contributed by BJ, 2-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-19.21t | |- ( F// x ph -> ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnf-alrim | |- ( F// x ph -> ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) ) ) |
|
2 | bj-nnfe | |- ( F// x ph -> ( E. x ph -> ph ) ) |
|
3 | 2 | imim1d | |- ( F// x ph -> ( ( ph -> A. x ps ) -> ( E. x ph -> A. x ps ) ) ) |
4 | 19.38 | |- ( ( E. x ph -> A. x ps ) -> A. x ( ph -> ps ) ) |
|
5 | 3 4 | syl6 | |- ( F// x ph -> ( ( ph -> A. x ps ) -> A. x ( ph -> ps ) ) ) |
6 | 1 5 | impbid | |- ( F// x ph -> ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) ) |