Metamath Proof Explorer


Theorem bj-19.37im

Description: One direction of 19.37 from the same axioms as 19.37imv . (Contributed by BJ, 2-Dec-2023)

Ref Expression
Assertion bj-19.37im
|- ( F// x ph -> ( E. x ( ph -> ps ) -> ( ph -> E. x ps ) ) )

Proof

Step Hyp Ref Expression
1 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
2 bj-nnfa
 |-  ( F// x ph -> ( ph -> A. x ph ) )
3 2 imim1d
 |-  ( F// x ph -> ( ( A. x ph -> E. x ps ) -> ( ph -> E. x ps ) ) )
4 1 3 syl5bi
 |-  ( F// x ph -> ( E. x ( ph -> ps ) -> ( ph -> E. x ps ) ) )